Fast 3D laser-induced reversible phase-structure modification of photostructurable glass

Article
Part of the following topical collections:
  1. Laser Technologies and Laser Applications

Abstract

Method of 3D processing of photosensitive glass (PhG) is demonstrated and researched in this work. Structural changes and phase transformation are initiated by CO2 laser radiation on defects, which were pre-generated in the bulk of the PhG by powerful picosecond Nd:YAG laser second harmonic pulses. Reversible phase transformations were realized inside PhG. CO2 laser irradiation allowed us to avoid completely heat treatment step in a furnace. As a result, direct writing of structures was implemented. As a part of the research, we have also carried out processes of crystallization visualization and return to amorphous state which allowed us to learn the kinetic of phase transformations in the bulk of the glass material.

Keywords

Photostructurable glass Foturan Picosecond laser pulses CO2 laser radiation Phase transformation 

References

  1. Ageev, E., Kieu, K., Veiko, V.P.: Modification of photosensitive glass-ceramic Foturan by ultrashort laser pulses. In: Veiko, V.P., Vartanyan, T.A. (eds.) Fundamentals of laser assisted micro-and nanotechnologies, pp. 79960R-79960R-79966. International Society for Optics and Photonics (2010)Google Scholar
  2. Ageev, É., Veĭko, V.: Study of the processes by which a photosensitive glass–ceramic is modified with the radiation of a CO2 laser. J.Opt. Technol. 79(6), 376–381 (2012)CrossRefGoogle Scholar
  3. Berezhnoi, A.L.: Glass-ceramics and photo-sitalls. Plenum press, New York (1970)Google Scholar
  4. Canioni, L., Bellec, M., Royon, A., Bousquet, B., Cardinal, T.: Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass. Opt. Lett. 33(4), 360–362 (2008)ADSCrossRefGoogle Scholar
  5. Cheng, Y., Sugioka, K., Masuda, M., Shihoyama, K., Toyoda, K., Midorikawa, K.: Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser. Opt. Express 11(15), 1809–1816 (2003a)ADSCrossRefGoogle Scholar
  6. Cheng, Y., Sugioka, K., Masuda, M., Toyoda, K., Kawachi, M., Shihoyama, K., Midorikawa, K.: 3D microstructuring inside Foturan glass by femtosecond laser. Riken Rev. 50, 101–106 (2003b)Google Scholar
  7. Cheng, Y., Sugioka, K., Midorikawa, K., Xu, Z.: Integrating 3D photonics and microfluidic using ultrashort laser pulses. SPIE Newsroom (2006). doi:10.1117/2.1200611.0484 Google Scholar
  8. Cheng, Y., Xu, Z., Xu, J., Sugioka, K., Midorikawa, K.: Three-dimensional femtosecond laser integration in glasses. Rev. Laser Eng. 36(APLS), 1206–1209 (2008)CrossRefGoogle Scholar
  9. Du, D., Liu, X., Korn, G., Squier, J., Mourou, G.: Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64(23), 3071–3073 (1994)ADSCrossRefGoogle Scholar
  10. Evans, A., Rupp, J.L., Gauckler, L.J.: Crystallisation of Foturan® glass–ceramics. J. Eur. Ceram. Soc. 32(1), 203–210 (2012)CrossRefGoogle Scholar
  11. He, F., Cheng, Y., Xu, Z., Sugioka, K., Midorikawa, K.: Rapid fabrication of optical volume gratings embedded in Foturan glass with femtosecond laser pulses. In: Conference on Lasers and Electro-Optics/Pacific Rim, p. MJ1_3. Optical Society of America (2009)Google Scholar
  12. He, F., Liao, Y., Lin, J., Song, J., Qiao, L., Cheng, Y., Sugioka, K.: Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass. Sensors 14(10), 19402–19440 (2014)CrossRefGoogle Scholar
  13. Helvajian, H., Fuqua, P.D., Hansen, W.W., Janson, S.: Laser microprocessing for nanosatellite microthruster applications. RIKEN Rev. 57–63 (2001)Google Scholar
  14. Hongo, T., Sugioka, K., Niino, H., Cheng, Y., Masuda, M., Miyamoto, I., Takai, H., Midorikawa, K.: Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser. J. Appl. Phys. 97(6), 063517 (2005)ADSCrossRefGoogle Scholar
  15. Krasnikov, A., Berezhnoi, A., Mirkin, L.: Structure and properties of ceramic materials after laser treatment. Glass Ceram. 56(5–6), 172–176 (1999)CrossRefGoogle Scholar
  16. Lewis, M.H., Metcalf-Johansen, J., Bell, P.: Crystallization mechanisms in glass–ceramics. J. Am. Ceram. Soc. 62(5–6), 278–288 (1979)CrossRefGoogle Scholar
  17. Livingston, F., Helvajian, H.: Photophysical processes that activate selective changes in photostructurable glass ceramic material properties. In: Dubowski, J.J., Taven, S. (eds.) Photon-based nanoscience and nanobiotechnology, pp. 225–265. Springer, Quebec (2006)CrossRefGoogle Scholar
  18. McLachlan, A., Meyer, F.: Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths. Appl. Opt. 26(9), 1728–1731 (1987)ADSCrossRefGoogle Scholar
  19. Nikonorov, N., Panysheva, E., Tunimanova, I., Chukharev, A.: Influence of glass composition on the refractive index change upon photothermoinduced crystallization. Glass Phys. Chem. 27(3), 241–249 (2001)CrossRefGoogle Scholar
  20. Sendova, M., Jiménez, J.A.: Plasmonic coupling in silver nanocomposite glasses. J. Phys. Chem. C 116(33), 17764–17772 (2012)CrossRefGoogle Scholar
  21. Steen, W.M., Mazumder J.: Theory, mathematical modelling and simulation. In: Steen, W.M., Mazumder J. (eds.) Laser material processing (4th edn), pp. 271–284. Springer, London (2010)Google Scholar
  22. Stillman, J., Judy, J., Helvajian, H.: Processing parameters for the development of glass/ceramic MEMS. In: Maher, M.A., Stewart, H.D., Chiao, J.C., Suleski, T.J., Johnson, E.G., Nordin, G.P. (eds.) MOEMS-MEMS 2007 Micro and Nanofabrication, pp. 64620A-64620A-64613. International Society for Optics and Photonics, California (2007)Google Scholar
  23. Stookey, S.: Photosensitive glass. Ind. Eng. Chem. 41(4), 856–861 (1949)CrossRefGoogle Scholar
  24. Stookey, S.: Chemical machining of photosensitive glass. Ind. Eng. Chem. 45(1), 115–118 (1953)CrossRefGoogle Scholar
  25. Sugioka, K., Cheng, Y.: Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining. Appl. Phys. A 114(1), 215–221 (2014a)ADSCrossRefGoogle Scholar
  26. Sugioka, K., Cheng, Y.: Femtosecond laser 3D micromachining for microfluidic and optofluidic applications. Springer-Verlag, London (2014b)CrossRefGoogle Scholar
  27. Sugioka, K., Cheng, Y., Midorikawa, K.: Three-dimensional micro and nanochips fabricated by femtosedond laser for biomedical applications. In: Dubowski, J.J., Taven, S. (eds.) Photon-based nanoscience and nanobiotechnology, pp. 307–332. Springer, Quebec (2006)CrossRefGoogle Scholar
  28. Veiko, V., Kieu, Q., Nikonorov, N., Shur, V., Luches, A., Rho, S.: Laser-induced modification of glass–ceramics microstructure and applications. Appl. Surf. Sci. 248(1), 231–237 (2005)ADSCrossRefGoogle Scholar
  29. Veiko, V., Yakovlev, E., Shakhno, E.: Physical mechanisms of CO2-laser-induced rapid structural changes in glass–ceramics. Quantum Electron. 39(2), 185–190 (2009)ADSCrossRefGoogle Scholar
  30. Veiko, V., Ageev, E., Sergeev, M., Petrov, A., Doubenskaia, M.: Photosensitive glass modification based on infrared CO2-laser irradiation. J. Laser Micro/Nanoeng. 8(2), 155–160 (2013a)CrossRefGoogle Scholar
  31. Veiko, V., Sergeev, M., Ageev, E., Petrov, A.: 3D express crystallization of Foturan glass at CO2 laser annealing on defects produced by picosecond laser. In: Veiko, V.P., Vartanyan, T.A. (eds.) Fundamentals of laser assisted micro-and nanotechnologies 2013, pp. 90650M-90650M-90657. International Society for Optics and Photonics, St. Petersburg (2013b)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. M. Sergeev
    • 1
  • V. P. Veiko
    • 1
  • R. A. Zakoldaev
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations