Rigorous analysis of numerical methods: a comparative study

  • Surendra L. Hada
  • B. M. A. Rahman
Part of the following topical collections:
  1. Optical Wave & Waveguide Theory and Numerical Modelling 2015


For any photonic device simulation, the accuracy of the numerical solution not only depends on the methods being used but also on the discretization parameters used in that numerical method. In this work, Finite Element Method and Finite Difference Time Domain Method based on Maxwell’s equations were used to simulate optical waveguides and directional couplers. As the solution accuracy may also depend on the index contrast used in such photonic devices, the characteristics of low-index contrast Germanium doped Silica and high-index contrast Silicon Nanowire Waveguides were analyzed, evaluated and benchmarked. Numerical results to benchmark Directional Couplers are also reported in this paper.


Waveguides, couplers, and arrays Finite element methods Integrated optics 



Authors acknowledge, numerical simulations by Dr. Ajanta Bahr, IIT Delhi, India, Mr. Jitendra K. Mishra, ISM, Dhanbad, India, Mr. Yousaf Omar Azabi, City University London, UK, Md. Enayetur Rahman, City University London, UK, and Mr. James Pond, Ph.D., Lumerical Solutions, Inc., Canada.


  1. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. Bierwirth, K., Schulz, N., Arndt, F.: Finite-difference analysis of rectangular dielectric waveguide structures. IEEE Trans. Microw. Theory Tech. 34(11), 1104–1114 (1986)ADSCrossRefGoogle Scholar
  3. Chiang, K.S.: Analysis of optical fibers by the effective-index method. Appl. Opt. 25(3), 348–354 (1986)ADSCrossRefGoogle Scholar
  4. Chiang, K.S.: Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides. Opt. Quantum Electron. 26(3), S113–S134 (1994)CrossRefGoogle Scholar
  5. Chiang, K.S., Lo, K.M., Kwok, K.S.: Effective-index method with built-in perturbation correction for integrated optical waveguides. J. Lightwave Technol. 14(2), 223–228 (1996)ADSCrossRefGoogle Scholar
  6. Chung, Y., Dagli, N., Thylen, L.: Explicit finite difference vectorial beam propagation method. Electron. Lett. 27(23), 2119–2121 (1991)CrossRefGoogle Scholar
  7. Davies, J.B., Muilwyk, C.A.: Numerical solution of uniform hollow waveguides with boundaries of arbitrary shape. In: Proceedings of the Institution of Electrical Engineers, vol. 113, pp. 277–284. IET (1966)Google Scholar
  8. de Electroniagnetisnio, G., de Cieiicias, F., de Granada, U.: Time-domain integral equation methods for transient analysis. IEEE Antennas Propag. Mag. 34(3), 15–23 (1992)CrossRefGoogle Scholar
  9. Feit, M., Fleck, J.: Computation of mode properties in optical fiber waveguides by a propagating beam method. Appl. Opt. 19(7), 1154–1164 (1980)ADSCrossRefGoogle Scholar
  10. Garcia, S.G., Lee, T.W., Hagness, S.C.: On the accuracy of the ADI-FDTD method. IEEE Antennas Wirel. Propag. Lett. 1(1), 31–34 (2002)ADSCrossRefGoogle Scholar
  11. Hagness, S., Taflove, A., Bridges, J.: Wideband ultralow reverberation antenna for biological sensing. Electron. Lett. 33(19), 1594–1595 (1997)CrossRefGoogle Scholar
  12. Huang, W.P., Xu, C., Chaudhuri, S.K.: A finite-difference vector beam propagation method for three-dimensional waveguide structures. IEEE Photonics Technol. Lett. 4(2), 148–151 (1992a)ADSCrossRefGoogle Scholar
  13. Huang, W.P., Xu, C.: A wide-angle vector beam propagation method. IEEE Photonics Technol. Lett. 4(10), 1118–1120 (1992b)ADSMathSciNetCrossRefGoogle Scholar
  14. Itoh, T.: Numerical Techniques for Microwave and Millimeter-Wave Passive Structures. Wiley, New York (1989)Google Scholar
  15. Knox, R., Toulios, P.: Integrated circuits for the millimeter through optical frequency range. In: Proceedings of Symposium Submillimeter Waves, vol. 20, pp. 497–515. Polytechnic Press of Polytechnic Institute of Brooklyn (1970)Google Scholar
  16. Luebbers, R.: Three-dimensional cartesian-mesh finite-difference time-domain codes. IEEE Antennas Propag. Mag. 36(6), 66–71 (1994)ADSCrossRefGoogle Scholar
  17. Marcatili, E.A.: Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst. Tech. J. 48(7), 2071–2102 (1969)CrossRefGoogle Scholar
  18. März, R.: Integrated Optics: Design and Modeling. Artech House on Demand, Boston (1995)Google Scholar
  19. Obayya, S.A., Rahman, B.M.A., El-Mikati, H.: New full-vectorial numerically efficient propagation algorithm based on the finite element method. J. Lightwave Technol. 18(3), 409–415 (2000)ADSCrossRefGoogle Scholar
  20. Rahman, B.M.A., Agrawal, A.: Finite Element Modeling Methods for Photonics. Artech House, Boston (2013)zbMATHGoogle Scholar
  21. Rahman, B.M.A., Davies, J.B.: Finite-element solution of integrated optical waveguides. J. Lightwave Technol. 2(5), 682–688 (1984)ADSCrossRefGoogle Scholar
  22. Rahman, B.M.A., Davies, J.B.: Vector-H finite element solution of GaAs/GaAlAs rib waveguides. IEE Proc. J. Optoelectron. 132(6), 349–353 (1985)CrossRefGoogle Scholar
  23. Taflove, A., Hagness, S.C.: Computational Electrodynamics. Artech House, Boston (2005)zbMATHGoogle Scholar
  24. Tsuji, Y., Koshiba, M.: A finite element beam propagation method for strongly guiding and longitudinally varying optical waveguides. J. Lightwave Technol. 14(2), 217–222 (1996)ADSCrossRefGoogle Scholar
  25. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Kathmandu UniversityDhulikhel, KavreNepal
  2. 2.City University LondonLondonUK

Personalised recommendations