Laser-induced glass surface structuring by LIBBH technology

  • G. K. Kostyuk
  • R. A. Zakoldaev
  • M. M. Sergeev
  • V. P. Veiko
Part of the following topical collections:
  1. Laser Technologies and Laser Applications


A technology of microrelief formation on the fused silica glass surface by laser induced black body heating is considered. An ytterbium fiber laser and a pressed graphite as an absorbent of laser radiation are used in this technology. The depth of the formed relief depending on the laser interact parameters has been investigated. It is shown that the depth increase linearly with increasing of laser radiation power, pulse duration and number of pulses. Possible mechanisms microrelief formation on the glass surface is discussed.


LIBBH NIR laser pulses Glass surface microstructuring Modification Microoptical elements 



Authors are very grateful to S.D. Vasilkov for help with MOEs research by profilometry. Experimental studies have been supported by the grant from leading universities of the RF (subsidy 074-U01) and the RSF agreement № 14-12-00351.


  1. Baglin, J.: Ion beam nanoscale fabrication and lithography—a review. Appl. Surf. Sci. 258(9), 4103–4111 (2012)ADSCrossRefGoogle Scholar
  2. Chao, H., Furong, L., Weiping, Z., Jimin, C.: Fabrication of microtransmittance grating using laser induced backside dry etching. J. Laser Appl. 24(1), 012001 (2012). doi: 10.2351/1.3656488 ADSCrossRefGoogle Scholar
  3. Chen, F., Liu, H., Yang, Q., Wang, X., Hou, C., Bian, H., Liang, W., Si, J., Hou, X.: Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt. Express 18(19), 20334–20343 (2010)ADSCrossRefGoogle Scholar
  4. Ding, X., Yasui, Y., Kawaguchi, Y., Niino, H., Yabe, A.: Laser-induced back-side wet etching of fused silica with an aqueous solution containing organic molecules. Appl. Phys. A 75(3), 437–440 (2002)ADSCrossRefGoogle Scholar
  5. Djurišić, A., Li, E.: Optical properties of graphite. J. Appl. Phys. 85(10), 7404–7410 (1999)ADSCrossRefGoogle Scholar
  6. Endert, H., Pätzel, R., Basting, D.: Excimer laser: a new tool for precision micromachining. Opt. Quant. Electron. 27(12), 1319–1335 (1995)Google Scholar
  7. Guo, R., Xiao, S., Zhai, X., Li, J., Xia, A., Huang, W.: Micro lens fabrication by means of femtosecond two photon photopolymerization. Opt. Express 14(2), 810–816 (2006)ADSCrossRefGoogle Scholar
  8. Hanada, Y., Sugioka, K., Gomi, Y., Yamaoka, H., Otsuki, O., Miyamoto, I., Midorikawa, K.: Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials. Appl. Phys. A 79(4–6), 1001–1003 (2004)ADSGoogle Scholar
  9. Hong, M., Sugioka, K., Lu, Y., Midorikawa, K., Chong, T.: Laser microfabrication of transparent hard materials and signal diagnostics. Appl. Surf. Sci. 186(1), 556–561 (2002)ADSCrossRefGoogle Scholar
  10. Hong, M., Sugioka, K., Wu, D.J., Wong, L., Lu, Y., Midorikawa, K., Chong, T.C.: Laser-induced-plasma-assisted ablation for glass microfabrication. In: International Symposium on Photonics and Applications, pp. 138–146. International Society for Optics and Photonics (2001)Google Scholar
  11. Kasztelanic, R., Kujawa, I., Stȩpień, R., Cimek, J., Haraśny, K., Klimczak, M., Waddie, A.J., Taghizadeh, M.R., Buczyński, R.: Fabrication and characterization of microlenses made of tellurite and heavy metal oxide glass developed with hot embossing technology. Opt. Quant. Electron. 46(4), 541–552 (2014)CrossRefGoogle Scholar
  12. Kiss, B., Vass, C., Heck, P., Dombi, P., Osvay, K.: Fabrication and analysis of transmission gratings produced by the indirect laser etching technique. J. Phys. D Appl. Phys. 44(41), 415103 (2011)CrossRefGoogle Scholar
  13. Kopitkovas, G., Lippert, T., David, C., Wokaun, A., Gobrecht, J.: Fabrication of micro-optical elements in quartz by laser induced backside wet etching. Microelectron. Eng. 67–68, 438–444 (2003)CrossRefGoogle Scholar
  14. Kopitkovas, G., Lippert, T., Murazawa, N., David, C., Wokaun, A., Gobrecht, J., Winfield, R.: Laser processing of micro-optical components in quartz. Appl. Surf. Sci. 254(4), 1073–1078 (2007)ADSCrossRefGoogle Scholar
  15. Kostyuk, G., Sergeev, M., Zakoldaev, R., Yakovlev, E.: Fast microstructuring of silica glasses surface by NIR laser radiation. Opt. Lasers Eng. 68, 16–24 (2015)CrossRefGoogle Scholar
  16. Molotokaitė, E., Gedvilas, M., Račiukaitis, G., Girdauskas, V.: Picosecond laser beam interference ablation of thin metal films on glass substrate. JLMN J. Laser Micro Nanoeng. 5(1), 74–79 (2010)CrossRefGoogle Scholar
  17. Nieto, D., Delgado, T., Flores-Arias, M.T.: Fabrication of microchannels on soda-lime glass substrates with a Nd:YVO4 laser. Opt. Lasers Eng. 63, 11–18 (2014)CrossRefGoogle Scholar
  18. Psaltis, D., Quake, S., Yang, C.: Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101), 381–386 (2006)ADSCrossRefGoogle Scholar
  19. Sergeev, M., Kostyuk, G., Zakoldaev, R., Yakovlev, E.: Laser induced passivation of porous glass to protect it from chemical degradation and aging. Prot. Metals Phys. Chem. Surf. 3, 427–435 (2015)CrossRefGoogle Scholar
  20. Smausz, T., Csizmadia, T., Kresz, N., Vass, C., Márton, Z., Hopp, B.: Influence on the laser induced backside dry etching of thickness and material of the absorber, laser spot size and multipulse irradiation. Appl. Surf. Sci. 254(4), 1091–1095 (2007)ADSCrossRefGoogle Scholar
  21. Sugioka, K., Obata, K., Hong, M., Wu, D., Wong, L., Lu, Y., Chong, T., Midorikawa, K.: Hybrid laser processing for microfabrication of glass. Appl. Phys. A 77(2), 251–257 (2003)ADSGoogle Scholar
  22. Veiko, V., Yakovlev, Y.: Physical fundamentals of laser forming of micro-optical components. Opt. Eng. 33(11), 3567–3571 (1994)ADSCrossRefGoogle Scholar
  23. Wang, J., Niino, H., Yabe, A.: Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching. Appl. Phys. A 69(1), S271–S273 (1999a)ADSCrossRefGoogle Scholar
  24. Wang, J., Niino, H., Yabe, A.: One-step microfabrication of fused silica by laser ablation of an organic solution. Appl. Phys. A Mater. Sci. Process. 68(1), 111–113 (1999b)ADSCrossRefGoogle Scholar
  25. Winfield, R., Bhuian, B., O’Brien, S., Crean, G.: Fabrication of grating structures by simultaneous multi-spot fs laser writing. Appl. Surf. Sci. 253(19), 8086–8090 (2007)ADSCrossRefGoogle Scholar
  26. Zakoldaev, R., Sergeev, M., Kostyuk, G., Veiko, V.: Laser-induced black-body heating (LIBBH) as a method for glass surface modification. J. Laser Micro Nanoeng. 10(1), 15–19 (2015)CrossRefGoogle Scholar
  27. Zimmermann, M., Schmidt, M.: Combination of a micro-lens multi-spot generator with a galvanometer scanner for flexible parallel micromachining of silicon. SPIE Optical Engineering+Applications. International Society for Optics and Photonics. 81300O (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • G. K. Kostyuk
    • 1
  • R. A. Zakoldaev
    • 1
  • M. M. Sergeev
    • 1
  • V. P. Veiko
    • 1
  1. 1.Laser Technology DepartmentITMO UniversitySt. PetersburgRussia

Personalised recommendations