Fabrication and characterization of diffractive phase plates for forming high-power terahertz vortex beams using free electron laser radiation

  • Boris Volodkin
  • Yulia Choporova
  • Boris KnyazevEmail author
  • Gennady Kulipanov
  • Vladimir Pavelyev
  • Victor Soifer
  • Nikolay Vinokurov
Part of the following topical collections:
  1. Laser technologies and laser applications


Beams with orbital angular momentum are widely used in many spectral ranges, including the visible light, radio-frequency band and even soft X-rays. In this regard, the terahertz range is still underinvestigated; very few studies were devoted to the generation of terahertz vortex beams, and only the Lagguerre–Gaussian beams were generated to date. In this paper we describe the design and fabrication of silicon binary phase plates with a spiral pattern, which transform an incident plane wave with a wavelength of 141 μm into a vortex one. Using the Novosibirsk free electron laser as a source of CW radiation, non-diffractive Bessel vortex beams with topological charges of l = ±1 and l = ±2 and the average power of 30 W were first produced in the terahertz spectral range. The spatial characteristics of the beams were examined using a microbolometer array. Path-length/radius ratios of 180 and 90, respectively, were attained experimentally for these beams. The self-healing ability of the beams obtained was demonstrated.


Diffractive phase plates Terahertz radiation Beams with orbital angular momentum Free electron laser 



Operation of the user station “Terarad”, belonging to the Novosibirsk State University, was supported by the Ministry of Education and Science of the Russian Federation (MES RF). The diffractive optical elements (DOEs) were designed with the support of the MES RF (Project 1879) and fabricated with the support of RFBR Grant No. 13-02-97007. The equipment for characterization of DOEs was developed with the support of Russian Science Foundation (Project 14-50-00080). The study of beams with the orbital angular momentum was supported by RFBR Grant No. 15-02-06444. The experiments were carried out with the application of equipment belonging to the Siberian Center of Synchrotron and Terahertz Radiation.


  1. Agafonov, A.N., Volodkin, B.O., Kaveev, A.K., Knyazev, B.A., Kropotov, G.I., Pavelev, V.S., Soifer, V.A., Tukmakov, K.N., Tsygankova, E.V., Choporova, Y.Y.: Silicon diffractive optical elements for high-power monochromatic terahertz radiation. Optoelectro: Instrum. Data Process. 49, 189–195 (2013)Google Scholar
  2. Agafonov, A.N., Volodkin, B.O., Volotovsky, S.G., Kaveev, A.K., Knyazev, B.A., Kropotov, G.I., Tukmakov, K.N., Pavelyev, V.S., Tsygankova, E.V., Tsypishka, D.I., Choporova, Y.Y.: Optical elements for focusing of terahertz laser radiation in a given two-dimensional domain. Opt. Mem. Neural Netw. (Inf. Opt.) 23, 185–190 (2014)CrossRefGoogle Scholar
  3. Agafonov, A.N., Choporova, Y.Y., Kaveev, A.V., Knyazev, B.A., Kropotov, G.I., Pavelyev, V.S., Tukmakov, K.N., Volodkin, B.O.: Control of transverse mode spectrum of Novosibirsk free electron laser radiation. Appl. Opt. 54, 3635–3639 (2015)ADSCrossRefGoogle Scholar
  4. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)ADSCrossRefGoogle Scholar
  5. Ayon, A.A., Braff, R., Lin, C.C., Sawin, H.H., Schmidt, M.A.: Characterization of a time multiplexed inductively coupled plasma etcher. J. Electrochem. Soc. 146, 339–349 (1999)CrossRefGoogle Scholar
  6. Choporova, Y.Y., Knyazev, B.A., Mitkov, M.S.: Classical holography in the terahertz range: recording and reconstruction techniques. IEEE Trans. Terahertz Sci. Technol. 5, 836–844 (2015)ADSCrossRefGoogle Scholar
  7. Demyanenko, M.A., Esaev, D.G., Marchishin, I.V., Ovsyuk, V.N., Fomin, B.I., Knyazev, B.A., Gerasimov, V.V.: Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range. Optoelectron. Instrum. Data Process. 47, 109–113 (2011)Google Scholar
  8. Demyanenko, M.A., Esaev, D.G., Knyazev, B.A., Kulipanov, G.N., Vinokurov, N.A.: Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser. Appl. Phys. Lett. (2008). doi: 10.1063/1.2898138 Google Scholar
  9. Gavrilov, A.V., Golovashkin, D.L., Doskolovich, L.L., Dyachenko, P.N., Khonina, S.N., Kotlyar, V.V., Kovalev, A.A., Nalimov, A.G., Nesterenko, D.V., Pavelyev, V.S., Shuyupova, Y.O., Skidanov, R.V., Soifer, V.A., in Diffractive Nanophotonics, ed. by V. A. Soifer, CRC Press, Taylor & Francis Group, CISP, Boca Raton, 2014Google Scholar
  10. He, J.X., Wang, X., Hu, D., Ye, J., Feng, S., Kan, Q., Zhang, Y.: Generation and evolution of the terahertz vortex beam. Opt. Express 21, 20230–20239 (2013)ADSCrossRefGoogle Scholar
  11. Heckenberg, R.N., McDuff, R., Smith, C.P., White, A.G.: Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992)ADSCrossRefGoogle Scholar
  12. Imai, R., Kanda, N., Higuchi, T., Konishi, K., Kuwata-Gonokami, M.: Generation of broadband terahertz vortex beams. Opt. Lett. 39, 3714–3717 (2014)ADSCrossRefGoogle Scholar
  13. Knyazev, B.A., Choporova, YuYu., Mitkov, M.S., Pavelyev, V.S., Volodkin, B.O.: Generation of terahertz surface plasmon polaritons using non-diffractive Bessel beams with orbital angular momentum. Phys. Rev. Lett. (2015). doi: 10.1103/PhysRevLett.115.163901 Google Scholar
  14. Komlenok, M.S., Volodkin, B.O., Knyazev, B.A., Kononenko, V.V., Kononenko, T.V., Konov, V.I., Pavelyev, V.S., Soifer, V.A., Tukmakov, K.N., Choporova, Yu Yu.: Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation. Quantum Electron. 45, 933–936 (2015)ADSCrossRefGoogle Scholar
  15. Kotlyar, V.V., Stafeev, S.S., Skidanov, R.V., Soifer, V.A.: Near-field diffraction from a binary microaxicon. Adv. Opt. Technol. 2012. doi: 10.1155/2012/974281
  16. Kulipanov, G.N., Bagryanskaya, E.G., Chesnokov, E.N., Choporova, Y.Y., Gerasimov, V.V., Getmanov, Y.V., Kiselev, S.L., Knyazev, B.A., Kubarev, V.V., Peltek, S.E., Popik, V.M., Salikova, T.V., Scheglov, M.A., Seredniakov, S.S., Shevchenko, O.A., Skrinsky, A.N., Veber, S.L., Vinokurov, N.A.: Novosibirsk free electron laser: facility description and recent experiments. IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015)ADSCrossRefGoogle Scholar
  17. McGloin, D., Dholakia, K.: Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005)ADSCrossRefGoogle Scholar
  18. Miyamoto, K., Suizu, K., Akiba, T., Omatsu, T.: Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Appl. Phys. Lett. (2014). doi: 10.1063/1.4886407 Google Scholar
  19. Sztul, H.I., Alfano, R.R.: Double-slit interference with LaguerreGaussian beams. Opt. Lett. 31, 999–1001 (2006)ADSCrossRefGoogle Scholar
  20. Vaity, P., Rusch, L.: Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett. 40, 597–600 (2015)ADSCrossRefGoogle Scholar
  21. Xie, Z., Wang, X., Ye, J., Feng, S., Akalin, T., Zhang, Y.: Spatial terahertz modulator. Sci. Reports. (2013). doi: 10.1038/srep03347 Google Scholar
  22. Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Samara State Aerospace University (SSAU)SamaraRussia
  2. 2.Budker Institute of Nuclear Physics SB RASNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Image Processing Systems Institute of the RASSamaraRussia

Personalised recommendations