Advertisement

The photoinduced voltage shift behavior in three-barrier resonant tunneling structure

  • W. G. Ning
  • J. Song
  • W. W. Wang
  • F. M. GuoEmail author
Article
  • 106 Downloads
Part of the following topical collections:
  1. 2015 Conference on “Numerical Simulation of Optoelectronic Devices”

Abstract

Resonant tunneling structures show negative differential resistance and enables many unique applications. Most researches have focused on structures with one or two barriers. In this paper, a three-barrier, two-well resonant tunneling structure integrated with a 1.2-µm-thick n-type GaAs layer are investigated numerically. The results show that the coupling between the energy level in the incident well and that in the central quantum well is the key point in understanding the origin of the current–voltage multi-peak at reverse bias. A photoinduced voltage shift manifests that the 1.2-µm-thick, slightly doped n-GaAs layer plays an important role in enhancing photoelectric sensitivity.

Keywords

Resonant tunneling Quantum well Polarization Photoinduced voltage shift 

Notes

Acknowledgments

This work was supported by National Scientific Research Plan (China, 2011CB932903) and State Scientific and Technological Commission of Shanghai (No. 118014546).

References

  1. An, Z., Ueda, T., Komoyama, S., Hirakawa, K.: Metastable excited states of a closed quantum dot with high sensitivity to infrared photons. Phys. Rev. B 75, 085417 (2007)ADSCrossRefGoogle Scholar
  2. Blakesley, J.C., See, P., Shields, A.J., Kardynal, B.E., Atkinson, P., Farrer, I., Ritchie, D.A.: Efficient single photon detection by quantum dot resonant tunneling diodes. Phys. Rev. Lett. 94, 067401 (2005)ADSCrossRefGoogle Scholar
  3. Buller, G.S., Collins, R.J.: Single-photon generation and detection. Meas. Sci. Technol. 21, 012202 (2010)CrossRefGoogle Scholar
  4. Chang, L.L., Esaki, L., Tsu, R.: Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24, 593–595 (1974)ADSCrossRefGoogle Scholar
  5. Ding, L., Fan, L., Li, Y.Q., Guo, F.M.: Physical modeling of an optical memory cell based on quantum dot-in-well hybrid structure. Opt. Quantum Electron. 45, 699–706 (2013)CrossRefGoogle Scholar
  6. Ertler, C., Fabian, J.: Resonant tunneling magnetoresistance in coupled quantum wells. Appl. Phys. Lett. 89, 242101 (2006)ADSCrossRefGoogle Scholar
  7. Feiginov, M., Sydlo, C., Cojocari, O., Meissner, P.: Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz. Appl. Phys. Lett. 99, 233506 (2011)ADSCrossRefGoogle Scholar
  8. Feiginov, M., Kanaya, H., Suzuki, S., Asada, M.: Operation of resonant-tunneling diodes with strong back injection from the collector at frequencies up to 1.46 THz. Appl. Phys. Lett. 104, 243509 (2014)ADSCrossRefGoogle Scholar
  9. Ji, Y., Chen, Y., Luo, K., Zheng, H., Li, Y., Li, C., Cheng, W., Yang, F.: Suppression of sequential tunneling current by a perpendicular magnetic field in a three-barrier, two-well heterostructure. Appl. Phys. Lett. 72, 3309–3311 (1998)ADSCrossRefGoogle Scholar
  10. Kapaev, V.V., Kopaev, Y.V., Savinov, S.A., Murzin, V.N.: High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures. J. Exp. Theor. Phys. 116, 497–515 (2013)ADSCrossRefGoogle Scholar
  11. Mazumder, P., Kulkarni, S., Bhattacharya, M., Sun, J., Haddad, G.: Digital circuit applications of resonant tunneling devices. Proc. IEEE 86, 664–686 (1998)CrossRefGoogle Scholar
  12. Pfenning, A., Hartmann, F., Langer, F., Hofling, S., Kamp, M., Worschech, L.: Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths. Appl. Phys. Lett. 104, 101109 (2014)ADSCrossRefGoogle Scholar
  13. Pfenning, A., Hartmann, F., Dias, M.R.S., Langer, F., Kamp, M., Castelano, L.K., Lopez-Richard, V., Marques, G.E., Hoefling, S., Worschech, L.: Photocurrent–voltage relation of resonant tunneling diode photodetectors. Appl. Phys. Lett. 107, 081104 (2015)ADSCrossRefGoogle Scholar
  14. Qiu, W., Chen, X.S., Lu, W.: Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes. IEEE Trans. Electron Dev. 62, 1926–1931 (2015)ADSCrossRefGoogle Scholar
  15. Tkach, N.V., Seti, Y.A.: Doublet resonances of an electron in symmetric three-barrier resonant tunneling structures. Tech. Phys. 54, 1832–1836 (2009)CrossRefGoogle Scholar
  16. Tkach, N.V., Seti, J.A.: Evolution of the spectral parameters of quasiparticles in an open symmetrical three-barrier resonant tunneling nanostructure. Phys. Solid State 53, 590-598 (2011a)ADSCrossRefGoogle Scholar
  17. Tkach, N.V., Seti, J.A.: Optimization of the configuration of a symmetric three-barrier resonant-tunneling structure as an active element of a quantum cascade detector. Semiconductors 45, 376–384 (2011b)ADSCrossRefGoogle Scholar
  18. Tkach, N.V., Seti, J.A., Matijek, V.A., Boyko, I.V.: On the active conductivity of a three-barrier resonant-tunneling structure and optimization of quantum cascade laser operation. Semiconductors 46, 1304–1309 (2012)ADSCrossRefGoogle Scholar
  19. Tkach, M.V., Seti, J.O., Grynyshyn, Y.B., Voitsekhivska, O.M.: The effect of interface phonons on operating electron states in three-barrier resonant tunneling structure as an active region of quantum cascade detector. Condens. Matter Phys. 17, 23704 (2014)CrossRefGoogle Scholar
  20. Tkach, N.V., Seti, J.A., Grynyshyn, Y.B.: Electron–phonon interaction in three-barrier nanosystems as active elements of quantum cascade detectors. Semiconductors 49, 529–539 (2015)ADSCrossRefGoogle Scholar
  21. Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)ADSCrossRefGoogle Scholar
  22. Wang, X., Hu, W., Chen, X., Xu, J., Wang, L., Li, X., Lu, W.: Dependence of dark current and photoresponse characteristics on polarization charge density for GaN-based avalanche photodiodes. J. Phys. D Appl. Phys. 44, 405102 (2011)ADSCrossRefGoogle Scholar
  23. Wang, X., Hu, W., Pan, M., Hou, L., Xie, W., Xu, J., Li, X., Chen, X., Lu, W.: Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes. J. Appl. Phys. 115, 013103 (2014)ADSCrossRefGoogle Scholar
  24. Zhou, X., Zheng, H., Li, G., Hu, B., Gan, H., Zhu, H.: Photoinduced voltage shift in a three-barrier, two-well resonant tunneling structure integrated with a 1.2-um-thick n-type GaAs layer. Phys. E Low Dimens. Syst. Nanostruct. 28, 242–246 (2005)ADSCrossRefGoogle Scholar
  25. Zhu, L., Zheng, H., Tan, P., Zhou, X., Ji, Y., Yang, F., Li, G., Zeng, Y.: Influence of level filling on optical properties of quantum well. Acta Phys. Sin. 53, 4334–4340 (2004)Google Scholar
  26. Zhu, H., Zheng, H.-Z., Li, G.-R., Tan, P.-H., Gan, H.-D., Ping, X., Zhang, F., Zhang, H., Xiao, W.-B., Sun, X.-M.: Greatly enhanced resonant tunneling of photo-excited holes in a three-barrier resonant tunneling structure. J. Infrared Millim Waves 26, 81–84 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Multidimensional Information Processing, School of Information Science TechnologyEast China Normal UniversityShanghaiChina

Personalised recommendations