Q-switching of Yb:YGG, Yb:LuGG and Yb:CNGG lasers by a graphene saturable absorber

  • Josep Maria Serres
  • Pavel Loiko
  • Xavier Mateos
  • Haohai Yu
  • Huaijin Zhang
  • Junhai Liu
  • Konstantin Yumashev
  • Uwe Griebner
  • Valentin Petrov
  • Magdalena Aguiló
  • Francesc Díaz
Article
Part of the following topical collections:
  1. Laser technologies and laser applications

Abstract

Yb:YGG, Yb:LuGG and Yb:CNGG compact diode-pumped lasers at 977 nm are passively Q-switched by a CVD-grown single layer graphene saturable absorber. With Yb:CNGG crystal, 190 ns/1.9 μJ pulses are generated at a repetition frequency of 235 kHz. This represents the highest pulse energy extracted from any graphene Q-switched Yb laser. The maximum average output power is 440 mW at 1045.1 nm with 24 % slope efficiency. With the Yb:YGG laser, the maximum output power reaches 462 mW at 1039.8 nm and the Q-switching conversion efficiency is as high as 55 %. Graphene is promising for generation of nanosecond pulses in Q-switched bulk Yb lasers at the frequencies approaching the MHz range.

Keywords

Ytterbium lasers Gallium garnets Graphene Q-switching 

Notes

Acknowledgments

This work was supported by the Spanish Government under Projects, MAT2013-47395-C4-4-R and TEC2014-55948-R, and by the Generalitat de Catalunya under Project 2014SGR1358. F.D. acknowledges additional support through the ICREA academia award 2010ICREA-02 for excellence in research. This work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 657630.

References

  1. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)ADSCrossRefGoogle Scholar
  2. Bao, Q.L., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z.X., Loh, K.P., Tang, D.Y.: Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009)CrossRefGoogle Scholar
  3. Bao, Q., Zhang, H., Ni, Z., Wang, Y., Polavarapu, L., Shen, Z., Xu, Q.H., Tang, D., Loh, K.P.: Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 4, 297–307 (2011)CrossRefGoogle Scholar
  4. Choudhary, A., Dhingra, S., D’Urso, B., Kannan, P., Shepherd, D.P.: Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers. IEEE Photon. Technol. Lett. 27, 646–649 (2015a)ADSCrossRefGoogle Scholar
  5. Choudhary, A., Beecher, S.J., Dhingra, S., D’Urso, B., Parsonage, T.L., Grant-Jacob, J.A., Hua, P., Mackenzie, J.I., Eason, R.W., Shepherd, D.P.: 456-mW graphene Q-switched Yb:Yttria waveguide laser by evanescent-field interaction. Opt. Lett. 40, 1912–1915 (2015b)ADSCrossRefGoogle Scholar
  6. Feng, T.L., Zhao, S.Z., Yang, K.J., Li, G.Q., Li, D.C., Zhao, J., Quiao, W.C., Hou, J., Yang, Y., He, J.L., Zheng, L.H., Wang, Q.G., Xu, X.D., Su, L.B., Xu, J.: Diode-pumped continuous wave tunable and graphene Q-switched Tm:LSO laser. Opt. Express 21, 24665–24673 (2013)ADSCrossRefGoogle Scholar
  7. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401-1–187401-4 (2006)ADSGoogle Scholar
  8. Liu, J., Wu, S., Yang, Q.-H., Wang, P.: Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser. Opt. Lett. 36, 4008–4010 (2011)ADSCrossRefGoogle Scholar
  9. Liu, J., Tian, X., Wu, K., Dai, Q., Han, W., Zhang, H.: Highly efficient Q-switched laser operation of Yb:Y3Ga5O12 garnet crystal. Opt. Express 21, 2624–2631 (2013)ADSCrossRefGoogle Scholar
  10. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (1–7), 2008Google Scholar
  11. Schmidt, A., Griebner, U., Zhang, H., Wang, J., Jiang, M., Liu, J., Petrov, V.: Passive mode-locking of the Yb:CNGG laser. Opt. Commun. 283, 567–569 (2010)ADSCrossRefGoogle Scholar
  12. Serres, J.M., Jambunathan, V., Mateos, X., Loiko, P., Lucianetti, A., Mocek, T., Yumashev, K., Petrov, V., Griebner, U., Aguiló, M., Díaz, F.: Graphene Q-switched Yb:YAG compact-laser. IEEE Photon. J. 7, 1503307-1–1503307-7 (2015a)CrossRefGoogle Scholar
  13. Serres, J.M., Loiko, P., Mateos, X., Yumashev, K., Griebner, U., Petrov, V., Aguiló, M., Díaz, F.: Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber. Opt. Express 23, 14108–14113 (2015b)ADSCrossRefGoogle Scholar
  14. Ugolotti, E., Schmidt, A., Petrov, V., Kim, J.W., Yeom, D.I., Rotermund, F., Bae, S., Hong, B.H., Agnesi, A., Fiebig, C., Erbert, G., Mateos, X., Aguilo, M., Diaz, F., Griebner, U.: Graphene mode-locked femtosecond Yb:KLuW laser. Appl. Phys. Lett. 101, 161112-1–161112-4 (2012)ADSCrossRefGoogle Scholar
  15. Xing, G., Guo, H., Zhang, X., Sum, T.C., Huan, C.H.A.: The physics of ultrafast saturable absorption in graphene. Opt. Express 18, 4184–4197 (2010)CrossRefGoogle Scholar
  16. Yoon, D., Son, Y.W., Cheong, H.: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 11, 3227–3231 (2011)CrossRefGoogle Scholar
  17. Zhang, F., Han, S., Liu, Y., Wang, Z., Xu, X.: Dependence of the saturable absorption of graphene upon excitation photon energy. Appl. Phys. Lett. 106, 091102-1–091102-5 (2015)ADSGoogle Scholar
  18. Zhang, H., Liu, J., Wang, J., Fan, J., Tao, X., Mateos, X., Petrov, V., Jiang, M.: Spectroscopic properties and continuous-wave laser operation of a new disordered crystal: Yb-doped CNGG. Opt. Express 15, 9464–9469 (2007)ADSCrossRefGoogle Scholar
  19. Zhao, T., Wang, Y., Chen, H., Shen, D.: Graphene passively Q-switched Ho:YAG ceramic laser. Appl. Phys. B 116, 947–950 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Josep Maria Serres
    • 1
  • Pavel Loiko
    • 1
    • 2
  • Xavier Mateos
    • 1
    • 3
  • Haohai Yu
    • 4
  • Huaijin Zhang
    • 4
  • Junhai Liu
    • 5
  • Konstantin Yumashev
    • 2
  • Uwe Griebner
    • 3
  • Valentin Petrov
    • 3
  • Magdalena Aguiló
    • 1
  • Francesc Díaz
    • 1
  1. 1.Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)Universitat Rovira i Virgili (URV)TarragonaSpain
  2. 2.Center for Optical Materials and TechnologiesBelarusian National Technical UniversityMinskBelarus
  3. 3.Max Born Institute for Nonlinear Optics and Short Pulse SpectroscopyBerlinGermany
  4. 4.State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
  5. 5.College of PhysicsQingdao UniversityQingdaoChina

Personalised recommendations