Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide

Part of the following topical collections:
  1. Optical Wave & Waveguide Theory and Numerical Modelling 2015


The ultrabroadband mid-infrared (MIR) supercontinuum (SC) generation using dispersion-tailored \(\hbox {Ge}_{11.5}\hbox {As}_{24}\hbox {Se}_{64.5}\) chalcogenide (ChG) glass rib-waveguide has been investigated numerically. An air-clad 1-cm-long rib-waveguide employing \(\hbox {MgF}_2\) glass for its lower cladding shows that an ultrabroadband MIR SC spanning from 1.8 to 8 μm and extending over more than 2 octave could be generated with a relatively low peak power of 0.5 kW pumped at a wavelength of 3.1 μm. Our estimated bandwidth is the largest reported so far for SC generated using ChG rib-waveguide pumped at a wavelength of 3.1 μm with a low peak power of 0.5 kW. We carry out simulations by varying peak power ranges between 0.1 and 3 kW. Our analysis through rigorous numerical simulations show that SC can be extended further into the MIR up to 10 μm using the same pump pulses with a relatively modest peak power of 3 kW.


Numerical approximation and analysis Nonlinear optics Glass waveguides Supercontinuum generation  


  1. Aggarwal, I.D., Sanghera, J.S.: Development and applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002)Google Scholar
  2. Andreasen, J., Bhal, A., Kolesik, M.: Spatial effects in supercontinuum generation in waveguides. Opt. Exp. 22(21), 25756–25767 (2014)ADSCrossRefGoogle Scholar
  3. Bass, M., Li, G., Stryland, E.V.: Hand Book of Optics. The McGraw-Hill, New York (2010)Google Scholar
  4. Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)ADSCrossRefGoogle Scholar
  5. Dudley, J.M., Taylor, J.R.: Ten years of nonlinear optics in photonic crystal fiber. Nat. Photon. 3, 85–90 (2009)ADSCrossRefGoogle Scholar
  6. Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011)ADSGoogle Scholar
  7. Fatome, J., Fortier, C., Nguyen, T.N., Chartier, T., Smektala, F., Messaad, K., Kibler, B., Pitois, S., Gadret, G., Finot, C., Troles, J., Desevedavy, F., Houizot, P., Renversez, G., Brilland, L., Traynor, N.: Linear and nonlinear characterizations of chalcogenide photonic crystal fibers. J. Lightwave Technol. 27(11), 1707–1715 (2009)ADSCrossRefGoogle Scholar
  8. Gai, X., Madden, S., Choi, D.Y., Bulla, D., Luther-Davies, B.: Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1 m−1 at 1550 nm. Opt. Exp. 18(18), 18866–18874 (2010a)ADSCrossRefGoogle Scholar
  9. Gai, X., Han, T., Prasad, A., Madden, S., Choi, D.Y., Wang, R., Bulla, D., Luther-Davies, B.: Progress in optical waveguides fabricated from chalcogenide glasses. Opt. Exp. 18(25), 26635–26646 (2010b)ADSCrossRefGoogle Scholar
  10. Gai, X., Choi, D., Madden, S., Yang, Z., Wang, R., Luther-Devies, B.: Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide. Opt. Lett. 37(18), 3870–3872 (2012)ADSCrossRefGoogle Scholar
  11. Granzow, N., Stark, S.P., Schmidt, M.A., Tverjanovich, A.S., Wondraczek, L., Russell, P.St J.: Supercontinuum generation in chalcogenide-silica step-index fibers. Opt. Exp. 19(21), 21003–21010 (2011)ADSCrossRefGoogle Scholar
  12. Hu, J., Menyuk, C.R., Shaw, L.B., Sanghera, J.S., Aggarwal, I.D.: Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. Opt. Exp. 18(3), 6722–6739 (2010)ADSCrossRefGoogle Scholar
  13. Hudson, D.D., Baudisch, M., Werdehausen, D., Eggleton, B.J., Biegert, J.: 1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA. Opt. Lett. 39(19), 5752–5755 (2014)ADSCrossRefGoogle Scholar
  14. Karim, M.R., Rahman, B.M.A., Agrawal, G.P.: Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: A parametric study. Opt. Exp. 22(25), 31029–31040 (2014)ADSCrossRefGoogle Scholar
  15. Karim, M.R., Rahman, B.M.A., Agrawal, G.P.: Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide. Opt. Exp. 23(5), 6903–6914 (2015)ADSCrossRefGoogle Scholar
  16. Kubat, I., Petersen, C.R., Moller, U.V., Seddon, A.B., Benson, T.M., Brilland, L., Mechin, D., Moselund, P.M., Bang, O.: Thulium pumped mid-infrared 0.9–9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Opt. Exp. 22(4), 3959–3967 (2014)ADSCrossRefGoogle Scholar
  17. Lamont, M.R.E., Sterke, C.M., Eggleton, B.J.: Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion. Opt. Exp. 15(15), 9458–9463 (2007)ADSCrossRefGoogle Scholar
  18. Lamont, M.R.E., Luther-Davies, B., Choi, D.Y., Madden, S., Eggleton, B.J.: Supercontinuum generation in dispersion engineered highly nonlinear (\(\gamma\) = 10 /W/m) As2S3 chalcogenide planar waveguide. Opt. Exp. 16(19), 14938–14944 (2008)ADSCrossRefGoogle Scholar
  19. Ma, P., Choi, D.Y., Yu, Y., Gai, X., Yang, Z., Debbarma, S., Madden, S., Luther-Davies, B.: Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Opt. Exp. 21(24), 29927–29937 (2013)ADSCrossRefGoogle Scholar
  20. Møller, U., Yu, Y., Kubat, I., Petersen, C.R., Gai, G., Brilland, L., Mechin, D., Caillaud, C., Troles, J., Luther-Davies, B., Bang, O.: Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt. Exp. 23(3), 3282–3291 (2015)ADSCrossRefGoogle Scholar
  21. Petersen, C.R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, M., Tang, Z., Furniss, D., Seddon, A., Bang, O.: Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber. Nat. Photon. 8, 830–834 (2014)ADSCrossRefGoogle Scholar
  22. Rahman, B.M.A., Davies, J.B.: Finite-element solution of integrated optical waveguides. J. Lightwave Technol. 2, 682–688 (1984)ADSCrossRefGoogle Scholar
  23. Rahman, B.M.A., Davies, J.B.: Vector-\(H\) finite element solution of GaAs/GaAlAs rib waveguides. In: Proceedings of IEE 132(6), 349–353 (1985)Google Scholar
  24. Shaw, L. B., Gattass, R. R., Sanghera, J. S., Aggarwal, I. D.: All-fiber mid-IR supercontinuum source from 1.5 to 5 μm. In: Proceedings of SPIE, vol. 7914 (2011)Google Scholar
  25. Silva, F., Austin, D.R., Thai, A., Baudisch, M., Hemmer, M., Faccio, D., Couairon, A., Biegert, J.: Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat. Commun. 3(807), 1–5 (2012)Google Scholar
  26. Weiblen, R.J., Docherty, A., Hu, J., Menyuk, C.R.: Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers. Opt. Exp. 18(25), 26666–26674 (2010)ADSCrossRefGoogle Scholar
  27. Wei, C., Zhu, X., Norwood, R.A., Seng, F., Peyghambarian, N.: Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm. Opt. Exp. 21(24), 29488–29504 (2013)ADSCrossRefGoogle Scholar
  28. Yu, Y., Gai, X., Wang, T., Ma, P., Wang, R., Yang, Z., Choi, D., Madden, S., Luther-Davies, B.: Mid-infrared supercontinuum generation in chalcogenides. Opt. Mater. Exp. 3(8), 1075–1086 (2013)CrossRefGoogle Scholar
  29. Yu, Y., Zhang, B., Gai, X., Ma, P., Choi, D., Yang, Z., Wang, R., Debbarma, S., Madden, S., Luther-Davies, B.: A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photon. Rev. 1–7 (2014)Google Scholar
  30. Yu, Y., Gai, X., Zhai, C., Qi, S., Guo, W., Yang, Z., Wang, R., Choi, D., Madden, S., Luther-Davies, B.: 1.8–10 μm mid-infrared supercontinuum generation in a step-index chalcogenide fiber using low peak pump power. Opt. Lett. 40(6), 1081–1084 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Mathematics, Computer Science and EngineeringCity University LondonLondonUK

Personalised recommendations