Role of recombination processes during multipulse femtosecond microstructuring of silicon surface

  • Igor Guk
  • Galina Shandybina
  • Evgeny Yakovlev
  • Alexandra Shamova
Part of the following topical collections:
  1. Laser technologies and laser applications


In the paper the numerical evaluations of the contribution of recombination processes—Auger recombination and nonradiative recombination in the dynamics of the heating of silicon during multipulse femtosecond laser irradiation in the regimes of microstructuring of the surface are presented to discussion. The original three-step quantitative-analytical method is used for the calculations. The comparison with other heat accumulation effects is made. It is shown, that Auger recombination decreases maximum surface temperature and does not contribute in the heat accumulation effect. At pulse energy density below the threshold, increase in the heating due to nonradiative recombination is 20–25 % of the total residual temperature at pulse repetition rate 10–1000 Hz.


Auger recombination Femtosecond multipulse microstructuring Nonradiative recombination Silicon 



This work was supported by Russian Federation Government grant 074-U01 and by Russian Science Foundation (Agreement No. 14-12-00351).


  1. Anisimov, S.I., Rethfeld, B.: On the theory of ultrashort laser pulse interaction with a metal. SPIE 3093, 192–203 (1997)ADSGoogle Scholar
  2. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Rinehart and Winston, Holt (1976)Google Scholar
  3. Ashitkov, S.I., Ovchinnikov, A.V., Agranat, M.B.: Recombination of an electron-hole plasma in silicon under the action of femtosecond laser pulses. JETP Lett. 79, 529–531 (2004)CrossRefADSGoogle Scholar
  4. Bonse, J., Baudach, S., Krüger, J., Kautek, W., Lenzner, M.: Femtosecond laser ablation of silicon–modification thresholds and morphology. Appl. Phys. A 74, 19–25 (2002)CrossRefADSGoogle Scholar
  5. Cerami, L., Mazur, L.E., Nolte, S., Schaffer, C.B.: Femtosecond laser micromachining. Ultrafast nonlinear optics, Chapter 12, pp. 287–321. Springer, Berlin (2013)Google Scholar
  6. Derriena, T.J.-Y., Torresa, R., Sarneta, T., Sentisa, M., Itina, T.E.: Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments. Appl. Surf. Sci. 258, 9487–9490 (2012)CrossRefADSGoogle Scholar
  7. Gerlach, W., Schlangenotto, H., Maeder, H.: On the radiative recombination rate in silicon. Phys. Status Solidi A 13, 277–283 (1972)CrossRefADSGoogle Scholar
  8. Guk, I., Shandybina, G., Yakovlev, E.: Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses. Appl. Surf. Sci. 335, 851–855 (2015)CrossRefGoogle Scholar
  9. Hommes, V., Miclea, M., Hergenroder, R.: Silicon surface morphology study after exposure to tailored femtosecond pulses. Appl. Surf. Sci. 252, 7449–7460 (2006)CrossRefADSGoogle Scholar
  10. Hopkins, P.E., Barnat, E.V., Cruz-Campa, J.L., Grubbs, R.K., Okandan, M., Nielson, G.N.: Excitation rate dependence of Auger recombination in silicon. J. Appl. Phys. 107, 1–6 (2010)CrossRefGoogle Scholar
  11. Lee, S.H., Lee, J.S., Park, S., Choi, Y.K.: Numerical analysis on heat transfer characteristics of a silicon film irradiated by pico- to femtosecond pulse lasers. Numer. Heat Transf. Part A 44, 833–850 (2003)CrossRefADSGoogle Scholar
  12. Li, C.-M., Sjodin, T., Dai, H.-L.: Photoexcited carrier diffusion near a Si(111) surface: non-negligible consequence of carrier–carrier scattering. Phys. Rev. B 56, 15252–15255 (1997)CrossRefADSGoogle Scholar
  13. Martsinovsky, G.A., Shandybina, G.D., Dement’eva, Y.S., Dyukin, R.V., Zabotnov, S.V., Golovan’, L.A., Kashkarov, P.K.: Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses. Semicond. 43, 1298–1304 (2009)Google Scholar
  14. Meyer, J.R., Kruer, M.R., Bartoli, F.J.: Optical heating in semiconductors: laser damage in Ge, Si, InSb, and GaAs. J. Appl. Phys. 51, 5513–5522 (1980)CrossRefADSGoogle Scholar
  15. Nastaran, M., Kazem, J.-G., Ashkenasi, D.: Formation of conical microstructures of silicon with picosecond laser pulses in air. J. Las. Micro/Nanoeng. 1, 12–16 (2006)CrossRefGoogle Scholar
  16. Peng, Y., Zhu, Y.M.: Evolution of micro-spikes on silicon surface etched by femtosecond laser with different fabrication conditions. Proc. SPIE 8271 82710I-1–82710I-13 (2012)Google Scholar
  17. Svantesson, K.G., Nilsson, N.G.: The temperature dependence of the Auger recombination coefficient of undoped silicon. J. Phys. C 12, 5111–5120 (1979)CrossRefADSGoogle Scholar
  18. van Driel, H.M.: Kinetics of high-density plasmas generated in Si by 1.06 and 0.53 μm picoseconds laser pulses. Phys. Rev. B 35, 8166–8176 (1987)CrossRefADSGoogle Scholar
  19. Vorobyev, A.Y., Guo, C.: Direct creation of black silicon using femtosecond laser pulses. Appl. Surf. Sci. 257, 7291–7294 (2011)CrossRefADSGoogle Scholar
  20. Yakovlev, E.B., Sergaeva, O.N., Svirina, V.V., Yarchuk, M.V.: Modeling of thin Cr film oxidation under the action of ultrashort laser pulses. SPIE 9065, 906509-1–906509-6 (2013)Google Scholar
  21. Zhu, J., W. Li, W., Zhao, M., Yin, G., Chen, X., Chen, D., Zhao, L.: Silicon microstructuring using ultrashort laser pulses. Lasers Mater. Process. Manuf. II China, 276–283 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Igor Guk
    • 1
  • Galina Shandybina
    • 1
  • Evgeny Yakovlev
    • 1
  • Alexandra Shamova
    • 1
  1. 1.University ITMOSt. PetersburgRussia

Personalised recommendations