Advertisement

A model for terahertz plasmons in graphene

  • A. G. Every
  • R. Warmbier
  • A. Quandt
Article
Part of the following topical collections:
  1. Advanced Materials for photonics and electronics

Abstract

We derive and analyze a 2D model for plasmons, in order to understand the general preconditions for the appearance of THz plasmons in low-dimensional nanosystems like graphene. Using experimental data and back of the envelope type calculations, we discuss the typical frequency ranges of plasmon resonances in such systems. Next we compare our results to recent ab initio calculations for ideal graphene, and show that these are consistent with the predictions of a 3D plasmon model, rather than a 2D model. The validity of the ab initio calculation does not extend to long-wavelength regime where our 2D model holds.

Keywords

Plasmon Graphene Terahertz 

Notes

Acknowledgments

The authors would like to thank the National Institute for Theoretical Physics (NITheP), the Mandelstam Institute for Theoretical Physics (MITP), the Materials Physics Research Institute (MPRI) and the DST-NRF Centre of Excellence in Strong Materials (CoE-SM) for support. We also acknowledge additional support through a bilateral project Plasmonics for a better efficiency of solar cells between South Africa and Italy (contributo del Ministero degli Affari Esteri e della Cooperazione Internazionale, Direzione Generale per la Promozione del Sistema Paese).

References

  1. Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982). doi: 10.1103/RevModPhys.54.437 CrossRefADSGoogle Scholar
  2. Bahn, S.R., Jacobsen, K.W.: An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4(3), 56–66 (2002). doi: 10.1109/5992.998641 CrossRefGoogle Scholar
  3. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). doi: 10.1103/RevModPhys.81.109 CrossRefADSGoogle Scholar
  4. Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Duak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V., Romero, N.A., Stausholm-Mller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Hammer, B., Hkkinen, H., Madsen, G.K.H., Nieminen, R.M., Nrskov, J.K., Puska, M., Rantala, T.T., Schitz, J., Thygesen, K.S., Jacobsen, K.W.: Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22(25), 253202 (2010)CrossRefADSGoogle Scholar
  5. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). doi: 10.1103/PhysRev.136.B864 CrossRefADSMathSciNetGoogle Scholar
  6. Kittel, C.: Quantum Theory of Solids, 2nd edn. Wiley, New York (1987)Google Scholar
  7. Klein, C.A., Straub, W.D.: Carrier densities and mobilities in pyrolytic graphite. Phys. Rev. 123(5), 1581–1583 (1961)CrossRefADSGoogle Scholar
  8. Low, T., Avouris, P.: Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2), 1086–1101 (2014). doi: 10.1021/nn406627u CrossRefGoogle Scholar
  9. Marinopoulos, A.G., Reining, L., Rubio, A., Olevano, V.: Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite. Phys. Rev. B 69(24), 245419 (2004). doi: 10.1103/PhysRevB.69.245419 CrossRefADSGoogle Scholar
  10. Mortensen, J.J., Hansen, L.B., Jacobsen, K.W.: Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005). doi: 10.1103/PhysRevB.71.035109 CrossRefADSGoogle Scholar
  11. Mowbray, D.J.: Theoretical electron energy loss spectroscopy of isolated graphene. Phys. Status Solidi B 251(12), 2509–2514 (2014). doi: 10.1002/pssb.201451174 CrossRefADSGoogle Scholar
  12. Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192–200 (2012). doi: 10.1038/nature11458 CrossRefADSGoogle Scholar
  13. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry, vol. 16. Oxford University Press, Oxford (1989)Google Scholar
  14. Tiras, E., Ardali, S., Tiras, T., Arslan, E., Cakmakyapan, S., Kazar, O., Hassan, J., Janzn, E., Ozbay, E.: Effective mass of electron in monolayer graphene: electron–phonon interaction. J. Appl. Phys. 113(4), 043708 (2013). doi: 10.1063/1.4789385 CrossRefADSGoogle Scholar
  15. Yan, J., Mortensen, J.J., Jacobsen, K.W., Thygesen, K.S.: Linear density response function in the projector augmented wave method: applications to solids, surfaces, and interfaces. Phys. Rev. B 83, 245122 (2011). doi: 10.1103/PhysRevB.83.245122 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Enrico Fermi CentreRomaItaly

Personalised recommendations