Actively frequency-stabilized external cavity diode laser with a linewidth of 2.9 kHz

  • Ismail Bayrakli


A single-mode frequency-stabilized broadly-tunable narrow-linewidth external cavity diode laser (ECL) is demonstrated. A broadly coarse wavelength tuning range of 135 nm for the spectral range between 1250 and 1385 nm is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. The laser is locked to a Fabry–Perot interferometer with a free spectral range of 1.5 GHz. The full width at half maximum is narrowed from 450 to 2.9 kHz by the laser frequency locking. Our system is suitable for applications or experiments requiring a frequency-stabilized ECL with narrow linewidth, such as coherent population trapping, precision spectroscopy, optical clocks, atom/ion cooling, Bose–Einstein condensates, atom interferometry, and quantum memory.


External cavity laser Frequency stabilization Tunable laser 



The author gratefully acknowledge financial support by the Scientific and Technological Research Council of Turkey (TUBITAK, 113E608).


  1. Afzelius, M., Usmani, I., Amari, A., Lauritzen, B., Walther, A., Simon, C., Sangouard, N., Minar, J., de Riedmatten, H., Gisin, N., Kroll, S.: Demonstration of atomic frequency comb memory for light with spin-wave storage. Phys. Rev. Lett. 104, 040503-1–040503-4 (2010)CrossRefADSGoogle Scholar
  2. Bartalini, S., Borri, S., Cancio, P., Castrillo, A., Galli, I., Giusfredi, G., Mazzotti, D., Gianfrani, L., De Natale, P.: Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit. Phys. Rev. Lett. 104, 083904-1–083904-4 (2010)CrossRefADSGoogle Scholar
  3. Bayrakli, I., et al.: Grating-coupled external-cavity short-wavelength InGaAs/InAlAs/AlAs quantum-cascade lasers. Opt. Quantum Electron. 41, 1019–1025 (2009)CrossRefGoogle Scholar
  4. Borisov, P.A., Melentiev, P.N., Rudnev, S.N., Balykin, V.I.: Simple system for active frequency stabilization of a diode laser in an external cavity. Laser Phys. 15, 1523–1527 (2005)Google Scholar
  5. Dumont, P., Camargo, F., Danet, J., Holleville, D., Guerandel, S., Pillet, G., Baili, G., Morvan, L., Dolfi, D., Gozhyk, I., Beaudoin, G., Sagnes, I., Georges, P., Lucas-Leclin, G.: Low-noise dual-frequency laser for compact Cs atomic clocks. J. Lightw. Technol. 32, 3817–3823 (2014)CrossRefADSGoogle Scholar
  6. Elliott, D.S., Roy, Rajarshi, Smith, S.J.: Extracavity laser band-shape and bandwidth modification. Phys. Rev. A 26, 12–18 (1982)CrossRefADSGoogle Scholar
  7. Galzerano, G., Gambetta, A., Fasci, E., Castrillo, A., Marangoni, M., Laporta, P., Gianfrani, L.: Absolute frequency measurement of a water-stabilized diode laser at 1.384 μm by means of a fiber frequency comb. Appl. Phys. B 102, 725–729 (2011)CrossRefADSGoogle Scholar
  8. Henry, C.H.: Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18(2), 259–264 (1982)CrossRefADSGoogle Scholar
  9. Hirata, S., Akatsuka, T., Ohtake, Y., Morinaga, A.: Sub-hertz-linewidth diode laser stabilized to an ultralow-drift high-finesse optical cavity. Appl. Phys. Express 7, 022705-1–022705-4 (2014)CrossRefADSGoogle Scholar
  10. Kasevich, M., Chu, S.: Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991)CrossRefADSGoogle Scholar
  11. Kaspar, S., Rosener, B., Rattunde, M., Topper, T., Manz, C., Kohler, K., Ambacher, O., Wagner, J.: Sub-MHz-linewidth 200-mW actively stabilized 2.3 μm semiconductor disk laser. IEEE Photon. Technol. Lett. 23, 1538–1540 (2011)CrossRefADSGoogle Scholar
  12. Myers, T.L., Williams, R.M., Taubman, M.S., Gmachl, C., Capasso, F., Sivco, D.L., Baillargeon, J.N., Cho, A.Y.: Free-running frequency stability of mid-infrared quantum cascade lasers. Opt. Lett. 27, 170–172 (2002)CrossRefADSGoogle Scholar
  13. Paboeuf, D., Schlosser, Peter J., Hastie, Jennifer E.: Frequency stabilization of an ultraviolet semiconductor disk laser. Opt. Lett. 38, 1736–1738 (2013)CrossRefADSGoogle Scholar
  14. Schawlow, A.L., Townes, C.H.: Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958)CrossRefADSGoogle Scholar
  15. Schilt, S., Bucalovic, N., Tombez, L., Dolgovskiy, V., Schori, C., Di Domenico, G., Zaffalon, M., Thomann, P.: Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb. Rev. Sci. Instrum. 82, 123116-1–123116-11 (2011)CrossRefADSGoogle Scholar
  16. Tombez, S.Schilt, Di Francesco, J., Führer, T., Rein, B., Walther, T., Di Domenico, G., Hofstetter, D., Thomann, P.: Linewidth of a quantum cascade laser assessed from its frequency noise spectrum and impact of the current driver. Appl. Phys. B 109, 407–414 (2012)CrossRefADSGoogle Scholar
  17. Vassen, W., Zimmermann, C., Kallenbach, R., Hänsch, T.W.: A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy. Opt. Commun. 75, 435–440 (1990)CrossRefADSGoogle Scholar
  18. Vitiello, M.S., Consolino, L., Bartalini, S., Taschin, A., Tredicucci, A., Inguscio, M., De Natale, P.: Quantum-limited frequency fluctuations in a terahertz laser. Nat. Photon. 6, 525–528 (2012)CrossRefADSGoogle Scholar
  19. Wynands, R., Nagel, A.: Precision spectroscopy with coherent dark states. Appl. Phys. B 68, 1–25 (1999)CrossRefADSGoogle Scholar
  20. Zhao, Y.T., Zhao, J.M., Huang, T., Xiao, L.T., Jia, S.T.: Frequency stabilization of an external-cavity diode laser with a thin Cs vapour cell. J. Phys. D Appl. Phys. 37, 1316–1318 (2004)CrossRefADSGoogle Scholar
  21. Zhao, Y., Li, Y., Wang, Q., Meng, F., Lin, Y., Wang, S., Lin, B., Cao, S., Cao, J., Fang, Z., Li, T., Zang, E.: 100-Hz linewidth diode laser with external optical feedback. IEEE Photon. Technol. Lett. 24, 1795–1798 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Suleyman Demirel UniversityIspartaTurkey

Personalised recommendations