Generalized momentum equation of quantum mechanics

  • Zhong-Yue WangEmail author
Part of the following topical collections:
  1. Micro/Nano Photonics for the International Year of Light 2015


Like the Planck–Einstein relation E =  ω, de Broglie’s \( {\mathbf{p}} = \hbar {\mathbf{k}} \) is another fundamental equation but the universal momentum formulation should be \( {\mathbf{p}} = \hbar {\varvec{\upbeta}} \). We propose the compelling evidence (vacuum Cherenkov radiation) and a new consequence which could lead to experimental checks is also worked out.


de Broglie formula Doppler effect Momentum operator Self-adjoint operator Infinite potential well EmDrive Origin of mass 

Mathematics Subject Classification

81P05 81Q10 81V80 78A50 83A05 


  1. Arndt, M., Nairz, O., Vos-Andrease, J., Keller, C., van der Zouw, G., Zellinger, A.: Wave–particle duality of C60 molecules. Nature 401, 680–682 (1999)CrossRefADSGoogle Scholar
  2. Bonneau, G., Faraut, J., Valent, G.: Self-adjoint extensions of operators and the teaching of quantum mechanics. Am. J. Phys. 69, 322–331 (2001)CrossRefADSGoogle Scholar
  3. Bugaev, S.P., Cherepenin, V.A., Kanavets, V.I., Klimov, A.I., Kopenkin, A.D., Koshelev, V.I., Popov, V.A., Slepkov, A.I.: Relativistic multiwave Cherenkov generators. IEEE Trans. Plasma Sci. 18, 525–536 (1990)CrossRefADSGoogle Scholar
  4. Colella, R., Overhauser, A.W., Werner, S.A.: Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975)CrossRefADSGoogle Scholar
  5. Compton, A.H.: A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 483–502 (1923)CrossRefADSGoogle Scholar
  6. Davisson, C., Germer, L.H.: Diffraction of electrons by a crystal of nickel. Phys. Rev. 30, 705–740 (1927)CrossRefADSGoogle Scholar
  7. de Broglie, L.: Radiation-waves and quanta. Comptes Rendus 177, 507–510 (1923)Google Scholar
  8. Domingos, J.M., Caldeira, M.H.: Self-adjointness of momentum operators in generalized coordinates. Found. Phys. 14(2), 147–154 (1984)CrossRefMathSciNetADSGoogle Scholar
  9. Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M., Tüxen, J.: Matter-wave interference with particles selected from a molecular library with masses exceeding 10000 amu. Phys. Chem. Chem. Phys. 15, 14696–14700 (2013)CrossRefGoogle Scholar
  10. Elliott, R.S.: Antenna Theory and Design, Revised Edition, pp. 440–453. Wiley, New York (2003a)CrossRefGoogle Scholar
  11. Elliott, R.S.: Antenna Theory and Design, Revised Edition, pp. 453–467. Wiley, New York (2003b)CrossRefGoogle Scholar
  12. Estermann, I., Stern, O.: Bending of molecular rays. Z. Phys. 61, 95–125 (1930)CrossRefADSGoogle Scholar
  13. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 1, §15-8, §15-9, §16-4, §16-5. Addison-Wesley (1964a)Google Scholar
  14. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 2, §24-2, §24-3, §24-4. Addison-Wesley (1964b)Google Scholar
  15. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 1, §17-4. Addison-Wesley (1964c)Google Scholar
  16. Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P.J., Tüxen, J., Mayor, M., Arndt, M.: Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011)CrossRefADSGoogle Scholar
  17. Greiner, W.: Classical Electrodynamics, 1st edn, pp. 365–369. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  18. Jackson, J.D.: Classical Electrodynamics, 3rd edn, p. 363. Wiley, New York (1998)Google Scholar
  19. Jönsson, C.: Electron diffraction at multiple slits. Z. Phys. 161, 454–474 (1961)CrossRefADSGoogle Scholar
  20. Markley, M.L.: Probability distributions of momenta in an infinite square-well potential. Am. J. Phys. 40(10), 1545–1546 (1972)CrossRefADSGoogle Scholar
  21. Mitchell, D.P., Powers, P.N.: Bragg reflection of slow neutrons. Phys. Rev. 50, 486–487 (1936)CrossRefADSGoogle Scholar
  22. Riggs, P.J.: Momentum probabilities for a single quantum particle in three-dimensional regular ‘Infinite’ wells: one way of promoting understanding of probability densities. Eur. J. Phys. Edu. 4(4), 1–13 (2013)Google Scholar
  23. Schrodinger, E.: Quantization as a problem of proper values. Ann. der Phys. 384, 361–377 (1926)CrossRefADSGoogle Scholar
  24. Tsimring, S.E.: Electron Beams and Microwave Vacuum Electronics, 1st edn, pp. 297–362. Wiley, New York (2007)Google Scholar
  25. Wang, Z.Y.: Modern theory for electromagnetic metamaterials. Plasmonics (2015). doi: 10.1007/s11468-015-0071-7 Google Scholar
  26. Zhang, K., Li, D.: Electromagnetic Theory for Microwaves and Optoelectronics, 2nd edn, pp. 401–472. Springer, Berlin (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Engineering DepartmentSBSCShanghaiChina

Personalised recommendations