Optical and Quantum Electronics

, Volume 47, Issue 8, pp 2465–2477

Physical properties of Mo-doped ZnO by first principles and Boltzmann equations

Article

Abstract

The effect of Mo-dopant on the structural, electronic, optical and electrical properties of ZnO have been investigated via both first principles study and Boltzmann equations. Results show that, the incorporations of Mo-dopant on Zn-site lead to a blue-shift in the optical gap energy. Furthermore, these incorporations create shallow donor states partially filled around Fermi level in the bottom of the conduction band. Hence, the transmittance is decreased in the visible-IR, whereas, is significantly improved in the UV region. More importantly, the electrical conductivity is fairly enhanced even at high Mo-concentration. Finally, this study reveals to potential to use of Mo-doped ZnO system as n-type transparent conducting electrode.

Keywords

Transparent conductive oxides First principles calculations TB-mBJ Mo-doped ZnO Boltzmann equations  Transport properties 

References

  1. Amin, B., Ahmad, M.I., Maqbool, S., Said, G., Ahmad, R.: Ab initio study of the bandgap engineering of Al1–xGaxN for optoelectronic application. J. Appl. Phys. 109, 023109 (2011)CrossRefADSGoogle Scholar
  2. Ammaih, Y., et al.: Structural, optical and electrical properties of ZnO: Al thin films for optoelectronic applications. Opt. Quantum Electron. 46, 229–234 (2014)CrossRefGoogle Scholar
  3. Aulbur, W.G., Strdele, M., Gorling, A.: Exact-exchange-based quasiparticle calculations. A. Phys. Rev. B 62, 7121 (2000)CrossRefADSGoogle Scholar
  4. Bakhtiar, U.H., Ahmed, R., Goumri-Said, S., Shaari, A., Afaq, A.: Electronic structure engineering of ZnO with the modified Becke–Johnson exchange versus the classical correlation potential approaches. Ph. Transit. 86, 1167–1177 (2013)CrossRefGoogle Scholar
  5. Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006)CrossRefADSGoogle Scholar
  6. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K: an augmented plane wave and local orbitals program for calculating crystal properties. In: Vienna, K. (ed.) University of Technology, Austria, Schwarz (2001)Google Scholar
  7. Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954)CrossRefADSGoogle Scholar
  8. Chaput, L., Pécheur, P., Tobola, J., Scherrer, H.: Transport in doped skutterudites: Ab initio electronic structure calculations. Phys. Rev. B 72, 085126 (2005)CrossRefADSGoogle Scholar
  9. Chu, S., Lim, J.H., Mandalapu, L.J., Yang, Z., Li, L., Liu, J.L.: Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes. Appl. Phys. Lett. 92, 152103 (2008)CrossRefADSGoogle Scholar
  10. Clatot, J., Campet, G., Zeinert, A., Labrugère, C., Nistor, M., Rougier, A.: Low temperature Si doped ZnO thin films for transparent conducting oxides, Sol. Sol. Energy. Sol. Cells 95, 2357–2362 (2011)CrossRefGoogle Scholar
  11. Corpus-Mendoza, A.N., De Souza, M.M., Hamelmann, F.: Transport mechanisms and effective Schottky barrier height of ZnO/a-Si:H and ZnO/\(\mu \)c-Si:H heterojunction solar cells. J. Appl. Phys. 114, 184505 (2013)CrossRefADSGoogle Scholar
  12. Cu, X.Q., Zhu, L.P., Cao, L., Ye, Z.Z., He, H.P., Chu, P.K.: Optical and electrical properties of ZnO:Al thin films synthesized by low-pressure pulsed laser deposition. Mater. Sci. Semicond. Process. 14, 48–51 (2011)CrossRefGoogle Scholar
  13. David, K., Tran, F., Blaha, P.: Improving the modified Becke-Johnson exchange potential. Phys. Rev. B 85, 155109 (2012)CrossRefADSGoogle Scholar
  14. Dixit, H., Saniz, R., Cottenier, S., Lamoen, D., Partoens, B.: Electronic structure of transparent oxides with the Tran–Blaha modified Becke–Johnson potentia. J. Phys.: Condens. Matter 24, 20 (2012)Google Scholar
  15. Duenow, J.N., Gessert, T.A., Wood, D.M., Barnes, T.M., Young, M., To, B., Coutts, T.J.: Transparent conducting zinc oxide thin films doped with aluminum and molybdenum. J. Vac. Sci. Technol. A 25, 955 (2007)CrossRefGoogle Scholar
  16. Erhart, P., Albe, K., Klein, A.: First-principles study of intrinsic point defects in ZnO: role of band structure, volume relaxation, and finite-size effects. Phys. Rev. B 73, 205203 (2006)CrossRefADSGoogle Scholar
  17. Estrich, N.A., Hook, D.H., Smith, A.N., Leonard, J.T., Laughlin, B., Maria, J.P.: Ga-doped ZnO conducting antireflection coatings for crystalline silicon solar cells. J. Appl. Phys. 113, 233703 (2013)CrossRefADSGoogle Scholar
  18. Faleev, S.V., Van Schilfgaard, M., Kotani, T.: All-electron self-consistent GW approximation: application to Si, MnO, and NiO. Phys. Rev. Lett. 93, 126406 (2004)CrossRefADSGoogle Scholar
  19. Gao, X., Uechara, K., Klug, D., Patchkovskii, S., Tse, J., Tritt, T.: Theoretical studies on the thermopower of semiconductors and low-band-gap crystalline polymers. Phys. Rev. B 72, 125202 (2005)CrossRefADSGoogle Scholar
  20. Ginley, D.S., Bright, C.: Transparent conducting oxides. MRS Bull. 25, 15 (2000)CrossRefGoogle Scholar
  21. Gürel, H.H., Akinci, Ö., Ünlü, H.: First principles calculations of Cd and Zn chalcogenides with modified Becke–Johnson density potential. Superlattices Microstruct. 51, 725–732 (2012)CrossRefADSGoogle Scholar
  22. Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M., Gonze, X.: Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013)CrossRefADSGoogle Scholar
  23. Heyd, J., Peralta, J.E., Scuserie, G.E., Martin, R.L.: Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005)CrossRefADSGoogle Scholar
  24. Huang, G.Y., Wang, C.Y., Wang, J.T.: Detailed check of the LDA + U and GGA + U corrected method for defect calculations in wurtzite ZnO. Comput. Phys. Commun. 183, 1749–1752 (2012)CrossRefADSGoogle Scholar
  25. Ito, N., Sato, Y., Song, P.K., Kaijio, A., Inoue, K., Shigesato, Y.: Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid films 496, 99 (2006)CrossRefADSGoogle Scholar
  26. Jaffe, J., Snyder, J., Lin, Z., Hess, A.: LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Phys. Rev. B 62, 1660 (2000)CrossRefADSGoogle Scholar
  27. Kim, H.J., et al.: Physical properties of transparent perovskite oxides (Ba,La)SnO3 with high electrical mobility at room temperature. Phys. Rev. B 86, 165205 (2012)CrossRefADSGoogle Scholar
  28. Kisi, E.H., Elcombe, M.M.: u Parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Cryst. C 45, 1867–1870 (1989)CrossRefGoogle Scholar
  29. Klingshirn, C.: ZnO: material, physics and applications. Chem. Phys. Chem. 8, 782 (2007)Google Scholar
  30. Liang, W.Y., Yoffe, A.D.: Transmission spectra of ZnO single crystals. Phys. Rev. Lett. 20, 59–62 (1968)CrossRefADSGoogle Scholar
  31. Madsen, G.K.H., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134 (2001)CrossRefADSGoogle Scholar
  32. Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006)MATHCrossRefADSGoogle Scholar
  33. Madsen, G.K.H.: Automated search for new thermoelectric materials: the case of LiZnSb. J. Am. Chem. Soc. 128, 12140 (2006)CrossRefGoogle Scholar
  34. Meinert, M.: Modified Becke-Johnson potential investigation of half-metallic Heusler compounds. Phys. Rev. B 87, 045103 (2013)CrossRefADSGoogle Scholar
  35. Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35–S44 (2005)CrossRefADSGoogle Scholar
  36. Mizoguchi, H., Kamiya, T., Matsuishi, S., Hosono, H.: A germanate transparent conductive oxide. Nat. Commun. 2, 470 (2011)CrossRefADSGoogle Scholar
  37. Moss, T.S.: The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 67 (1954)Google Scholar
  38. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944)MATHMathSciNetCrossRefADSGoogle Scholar
  39. Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., Hosono, H.: Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269 (2003)CrossRefADSGoogle Scholar
  40. Oba, F., Togo, A., Tanaka, I., Paier, J., Kresse, G.: Defect energetics in ZnO: a hybrid Hartree-Fock density functional study. Phys. Rev. B 77, 245202 (2008)CrossRefADSGoogle Scholar
  41. Okoye, C.M.I.: Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. J. Phys. Condens. Matter. 15, 5945 (2003)CrossRefADSGoogle Scholar
  42. Ong, K.P., Singh, D.J., Wu, P.: Analysis of the thermoelectric properties of n-type ZnO. Phys. Rev. B 83, 115110 (2011)CrossRefADSGoogle Scholar
  43. Ozgur, U., et al.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)CrossRefADSGoogle Scholar
  44. Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I.C., Angyan, J.G.: Screened hybrid density functionals applied to solids. J. Chem. Phys. 125, 249901 (2006)CrossRefADSGoogle Scholar
  45. Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T.: Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293 5 (2005)Google Scholar
  46. Perdew, J.P., Burke, K., Emzerholf, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefADSGoogle Scholar
  47. Saha, S., Sinha, T.P.: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO\(_3\). Phys. Rev. B 62, 8828 (2000)CrossRefADSGoogle Scholar
  48. Schleife, A., Fuchs, F., Furthmüller, J., Bechstedt, F.: First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B 73, 245212 (2006)CrossRefADSGoogle Scholar
  49. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–767 (1976)CrossRefADSGoogle Scholar
  50. Shi, J., Ma, H.H., Ma, G., Ma, H., Shen, H.: Structure and ultrafast carrier dynamics in n-type transparent Mo:ZnO nanocrystalline thin films. Appl. Phys. A 92, 357 (2008)CrossRefADSGoogle Scholar
  51. Shishkin, M., Marsman, M., Kresse, G.: Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. Phys. Rev. Lett. 99, 246403 (2007)CrossRefADSGoogle Scholar
  52. Shiyou, C., Gong, X.G., Aron, W., Wei, S.H.: Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: first-principles insights. Phys. Appl. Lett. 94, 0419003 (2009)Google Scholar
  53. Slassi, A.: Ab initio study of a cubic perovskite: Structural, electronic, optical and electrical properties of native, lanthanum and antimony-doped barium tin oxide. Mater. Sci. Semicond. Process. 24, 110–116 (2015)Google Scholar
  54. Slassi, A., Naji, S., Benyoussef, A., Hamedoun, M., El Kenz, A.: On the transparent conducting oxide Al doped ZnO: first principles and Boltzmann equations study. J. Alloys Compd. 605, 118–123 (2014)CrossRefGoogle Scholar
  55. Sonawane, B.K., et al.: Structural, optical and electrical properties of post annealed Mg doped ZnO films for optoelectronics applications. Opt. Quantum Electron. 41, 17–26 (2009)CrossRefGoogle Scholar
  56. Swapna, R., Santhosh Kumar, M.C.: Growth and characterization of molybdenum doped ZnO thin films by spray pyrolysis. J. Phys. Chem. Solids 74, 418–425 (2013)CrossRefADSGoogle Scholar
  57. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)CrossRefADSGoogle Scholar
  58. Van Schilfgaarde, M., Kotani, T., Faleev, S.V.: Adequacy of approximations in GW theory. Phys. Rev. B 74, 245125 (2006)CrossRefADSGoogle Scholar
  59. Wager, J.F.: Transparent electronics. Science 300, 1245 (2003)CrossRefGoogle Scholar
  60. Wang, J., Sun, B., Gao, F., Greenham, N.C.: Memristive devices based on solution-processed ZnO nanocrystals. Phys. Status Solidi A 207, 484–487 (2010)CrossRefADSGoogle Scholar
  61. Wu, C., Shen, J., Ma, J., Wang, S., Zhang, Z., Yang, X.: Electrical and optical properties of molybdenum-doped ZnO transparent conductive thin films prepared by dc reactive magnetron sputtering, Semicond. Sci. Technol. 24, 125012 (6pp) (2009)Google Scholar
  62. Wu, H.C., Peng, Y.C., Chen, C.C.: Effects of Ga concentration on electronic and optical properties of Ga-doped ZnO from first principles calculations. Opt. Mater. 35, 509–515 (2013)CrossRefADSGoogle Scholar
  63. Xu, J., Shi, S., Zhang, X., Wang, Y., Zhu, M., Li, L.: Structural and optical properties of (Al, K)-co-doped ZnO thin films deposited by a sol–gel technique. Mater. Sci. Semicond. Process. 16, 732–737 (2013)CrossRefGoogle Scholar
  64. Zhang, S., Cao, Q.: First-principles and experimental studies of the IR emissivity of Sn-doped ZnO. Mater. Sci. Semicond. Process. 16, 1447–1453 (2013)CrossRefGoogle Scholar
  65. Zhou, X.H., Hu, Q.H., Fu, Y.: First-principles LDA+U studies of the In-doped ZnO transparent conductive oxide. J. Appl. phys. 104, 063703 (2008)CrossRefADSGoogle Scholar
  66. Ziman, J.M.: Electrons and phonons. Oxford University Press, New York (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.LMPHE (URAC 12), Faculté des SciencesUniversité Mohammed V-AgdalRabatMorocco

Personalised recommendations