Optical and Quantum Electronics

, Volume 47, Issue 5, pp 1197–1205 | Cite as

Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria

  • Alka Verma
  • Arun Prakash
  • Rajeev Tripathi


The present study investigates the angular responses, sensitivity, detection accuracy and quality parameter of surface plasmon resonance biosensor configuration which is coated with graphene layer for the detection of Pseudomonas and Pseudomonas-like bacteria. The proposed biosensor uses attenuated total reflection method to detect the change in refractive index near the sensor surface. By comparing these results with the conventional gold layer surface plasmon resonance biosensor, it is observed that the overall performance of the proposed biosensor is improved by introducing the graphene layer. Also, the dependence of sensitivity on the number of graphene layers for the proposed sensor is plotted and analyzed.


Surface plasmons Reflectance Sensitivity Detection accuracy  Quality parameter 


  1. Akimov, Y.A., Koh, W.S., Sian, S.Y., Ren, S.: Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles? Appl. Phys. Lett. 96(7), 073111 (2010)CrossRefADSGoogle Scholar
  2. Bruna, M., Borini, S.: Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 94(3), 031901 (2009)CrossRefADSGoogle Scholar
  3. Fletchert, M., Loeb, G.I.: Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl. Environ. Microbiol. 37(1), 67–72 (1979)Google Scholar
  4. Gupta, B.D., Verma, R.K.: Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J. Sens. 2009, 1–12 (2009)CrossRefMathSciNetGoogle Scholar
  5. Homola, J., Yee, S.S., Gauglitzand, G.: Surface Plasmon resonance sensors: review. Anal. Sens. Actuators B 54, 3–15 (1999)CrossRefGoogle Scholar
  6. Homola, J.: Present and future of surface Plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)CrossRefGoogle Scholar
  7. Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), 1685–1706 (2004)CrossRefGoogle Scholar
  8. Kim, J., Kasture, M., Hwang, T., Kulkarni, A., Amin, R., Park, S., Kim, T., Gosavi, S.: Graphene-based waveguides: novel method for detecting biological activity. Appl. Biochem. Biotechnol. 167, 1069–1075 (2012)CrossRefGoogle Scholar
  9. Kim, J.A., Hwang, T., Dugasani, S.R., Amin, R., Kulkarni, R., Park, S.H., Kim, T.: Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications. Sens. Actuators B 187, 426–433 (2013)Google Scholar
  10. Kretschmann, E., Raether, H.: Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. 23A, 2135–2136 (1968)ADSGoogle Scholar
  11. Kretschmann, E.: The determination of the optical constants of metals by excitation of surface plasmons. Z. Phys. 241, 313–324 (1971)CrossRefADSGoogle Scholar
  12. Kullab, H.M., Taya, S.A., El-Agez, T.M.: Metal-clad waveguide sensor using a left-handed material as a core layer. J. Opt. Soc. Am. B 29(5), 959–964 (2012)Google Scholar
  13. Lavers, C.R., Itoh, K., Wu, S.C., Murabayashi, M., Mauchline, I., Stewart, G., Stout, T.: Planar optical waveguides for sensing applications. Sens. Actuators B 69, 85–95 (2000)CrossRefGoogle Scholar
  14. Noginov, M.A., Podolskiy, V.A. (eds.): Tutorials in Metamaterials. CRC Press, Boca Raton, FL (2012)Google Scholar
  15. Otto: Excitation of surface plasma waves in silver by the method of frustrated total reflection. Z. Physik 216, 398–410 (1968)Google Scholar
  16. Palik, E.D. (eds.): Handbook of Optical Constants of Solids , vol. 1. Academic press, (1985)Google Scholar
  17. Pockrand, I.: Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72(3), 577–588 (1978)CrossRefADSGoogle Scholar
  18. Prajapati, Y.K., Yadav, A., Singh, V., Saini, J.P.: Effect of metamaterial layer on optical surface plasmon resonance Sensor. Int. J. Light Electron Opt. 124(18), 607–3610 (2013)CrossRefGoogle Scholar
  19. Reather, H.: Surface Plasmons on Smooth and Rough Surfaces and on gratings, vol. 111. Springer, Berlin (1988)Google Scholar
  20. Roh, S., Chung, T., Lee, B.: Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensor. Sensors 11, 1565–1588 (2011)CrossRefGoogle Scholar
  21. Shuwan, Z., Ken-Tye, Y., Indrajit, R., Xuan-Quyen, D., Xia, Y., Feng, L.: Areviewonfunctionalized gold nanoparticles for biosensing applications. Plasmonics 6, 491–506 (2011)CrossRefGoogle Scholar
  22. Szunerits, S, Maalouli, N., Wijaya, E, Vilcot, J.-P., Boukherroub, R.: Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal. Bioanal. Chem. 405, 1435–1443 (2013)Google Scholar
  23. Taya, S.A., Shabat, M.M.: Sensitivity enhancement in optical waveguide sensors using metamaterials. Appl. Phys. A 103, 611–614 (2011)CrossRefADSGoogle Scholar
  24. Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B 160, 623–631 (2011)CrossRefGoogle Scholar
  25. Wu, L., Chu, H.S., Koh, W.S., Li, E.P.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18(14), 14395–14400 (2010)CrossRefADSGoogle Scholar
  26. Yamamoto, M.: Surface plasmon resonance (SPR) theory: tutorial. Rev. Polarogr. 48, 209 (2002)CrossRefGoogle Scholar
  27. Zhao, J., Zhang, X., Yonzon, C.R., Haes, A.J., Van Duyne, R.P.: Localized surface plasmon resonance biosensors. Nanomedicine 1, 219–228 (2006). doi: 10.2217/17435889.1.2.219 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMotilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations