Optical and Quantum Electronics

, Volume 47, Issue 6, pp 1397–1405 | Cite as

Circuit model of uni-traveling carrier photodiode with high power and enhanced bandwidth technique

  • Senjuti Khanra
  • Abhirup Das Barman


An electrical equivalent circuit model of InGaAs/InP uni-travelling carrier photodiode (UTC-PD) is presented. The model is suitable to be built on any electrical circuit simulator to optimize the design parameters of the device. Its performance in terms of bandwidth, linearity, third order inter-modulation distortion and output photo current are investigated. Simulation techniques to measure inter-modulation distortion products and linearity are given in detail. The result obtained by the modeling technique is validated through a comparison with the reported experimental results. It is shown that 3 dB cutoff frequency and output photocurrent can be substantially improved by inserting a small inductance in series with the load together with choosing an optimum absorption layer width in UTC-PD. This technique does not sacrifice the device linearity to a large extent.


Circuit model Frequency response Photodiode Inter-modulation 



The work is undertaken as part of Information Technology Research Academy (ITRA), Media Lab Asia project entitled “Mobile Broadband Service Support over Cognitive Radio Networks”.


  1. Beling, A., Pan, H., Chen, H., Campbell, J.C.: Linearity of modified uni-traveling carrier photodiodes. J. Lightw. Technol. 26(15), 2373–2378 (2008)CrossRefADSGoogle Scholar
  2. Chtioui, M., Lelarge, F., Enard, A., Pommereau, F., Carpentier, D., Marceaux, A., Dijk, F.V., Achouche, M.: High responsivity and high power UTC and MUTC GaInAs-InP photodiodes. IEEE Photonics Tech. Lett. 24(4), 318–320 (2012)CrossRefADSGoogle Scholar
  3. Hekkala, A., Lasanen, M., Harjula, I., Vieira, L.C., Gomes, N.J., Nkansah, A., Bittner, S., Diehm, F., Kotzsch, V.: Analysis of and compensation for non-ideal RoF links in DAS. IEEE Wirel. Commun. 10, 1284–1536 (2010)Google Scholar
  4. Ishibashi, T., Furuta, T., Fushimi, H., Kodama, S., Ito, H., Nagatsuma, T., Shimizu, N., Miyamoto, Y.: InP/InGaAs uni-traveling-carrier photodiodes. IEICE Trans. Electron. E83–C(6), 938–949 (2000)Google Scholar
  5. Ishibashi, T., Furuta, T., Fushimi, H., Ito, H.: Photoresponse characteristicsof uni-traveling-carrier photodiodes. Proc. SPIE Phys. Simul. Optoelectron. Dev. IX San Jose 4283, 469–479 (2001)ADSGoogle Scholar
  6. Ito, H., Nagatsuma, T., Hirata, A., Minotani, T., Sasaki, A., Hirota, Y., Ishibashi, T.: High-power photonic millimeter wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes. IEE Proc. Optoelectron. 150(2), 138–142 (2003)CrossRefGoogle Scholar
  7. Ito, H., Kodama, S., Muramoto, Y., Furuta, T., Nagatsuma, T., Ishibashi, T.: High-speed and high-output InP-InGaAs uni-traveling carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004)CrossRefGoogle Scholar
  8. Kuo, F-M., Hsu, T-C., Shi, J-W.: Strong bandwidth-enhancement effect in high-speed GaAs/AlGaAs based uni-traveling carrier photodiode under small photocurrent and zero-bias operation. In: Proceedings of LEOS Annual Meeting, TuB3, Belec-Antalya, pp. 141–142 (2009)Google Scholar
  9. Lasaosa, D., Shi, J.-W., Pasquariello, D., Gan, K.-G., Tien, M.-C., Chang, H.-H., Chu, S.-W., Sun, C.-K., Chiu, Y.-J., Bowers, J.E.: Traveling-wave photodetectors with high power-bandwidth and gain-bandwidth product performance. IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004)CrossRefGoogle Scholar
  10. Leavittt, R.P., Bradshaw, J.L.: Transit time effects on photocurrent spectra of multiple quantum well diodes. Appl. Phys. Lett. 59(19), 2433–2435 (1991)CrossRefADSGoogle Scholar
  11. Pan, H., Li, Z., Campbell, J.C.: High-power high-resposivity modified uni-traveling-carrier photodiode used as V-band optoelectronic mixers. J. Lightw. Technol. 28(8), 1184–1189 (2010)CrossRefADSGoogle Scholar
  12. Piprek, J., Pasquariello, D., Lasaosa, D., Bowers, J.E.: Novel waveguide photodetectors on InP with integrated light amplification. Proc. Electrochem. Soc. 2003(4), 1–8 (2003)Google Scholar
  13. Shi, J.-W., Huang, C.-B., Pan, C.-L.: Millimeter-wave photonic wireless links for very high data rate communication. NPG Asia Mater. 3, 41–48 (2001)CrossRefGoogle Scholar
  14. Simons, R.N.: Coplanar Waveguide Circuits, Components, and Systems. Wiley, New York (2001)CrossRefGoogle Scholar
  15. Yao, J.: A tutorial on microwave photonics, Research Highlights. IEEE Photonics Soc. Newsl. 26, 5–12 (2012)Google Scholar
  16. Zhu, H.: Performance comparison between distributed antenna and microcellular systems. IEEE J. Sel. Areas Commun. 29(6), 1151–1163 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Radio Physics and ElectronicsUniversity of CalcuttaKolkataIndia
  2. 2.ITRA project “Mobile Broadband Service Support over Cognitive Radio Networks”IRPE-CUKolkataIndia

Personalised recommendations