Optical and Quantum Electronics

, Volume 47, Issue 6, pp 1327–1332 | Cite as

On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement

  • Thomas KopruckiEmail author
  • Nella Rotundo
  • Patricio Farrell
  • Duy Hai Doan
  • Jürgen Fuhrmann


Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes.


Scharfetter–Gummel scheme Thermodynamic consistency 



The work has been supported by ERC-2010-AdG no. 267802  Analysis of Multiscale Systems Driven by Functionals (N.R.) and by Deutsche Forschungsgemeinschaft (DFG) within the collaborative research center 787 Semiconductor Nanophotonics (T.K.).


  1. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme. Numer. Math. 121, 637–670 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. Blakemore, J.: The parameters of partially degenerate semiconductors. Proc. Phys. Soc. Lond. A 65, 460–461 (1952)CrossRefADSzbMATHGoogle Scholar
  4. Eymard, R., Fuhrmann, J., Gärtner, K.: A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local dirichlet problems. Numer. Math. 102, 463–495 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. Jüngel, A.: Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion. ZAMM 75(10), 783–799 (1995)CrossRefADSzbMATHGoogle Scholar
  6. Koprucki, T., Gärtner, K.: Discretization scheme for drift-diffusion equations with strong diffusion enhancement. Opt. Quantum Electron. 45(7), 791–796 (2013a)CrossRefGoogle Scholar
  7. Koprucki T, Gärtner K: Generalization of the Scharfetter–Gummel scheme. In: 2013 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), pp. 85–86 (2013b)Google Scholar
  8. Macneal, R.H.: An asymmetrical finite difference network. Q. Math. Appl. 11, 295–310 (1953)zbMATHMathSciNetGoogle Scholar
  9. Purbo, O.W., Cassidy, D.T., Chisholm, S.H.: Numerical model for degenerate and heterostructure semiconductor devices. J. Appl. Phys. 66(10), 5078–5082 (1989)CrossRefADSGoogle Scholar
  10. Scharfetter, D.L., Gummel, H.K.: Large signal analysis of a silicon Read diode. IEEE Trans. Electron. Dev. 16, 64–77 (1969)CrossRefGoogle Scholar
  11. Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Comput. Math. Math. Phys. 50, 38–53 (2010)CrossRefGoogle Scholar
  12. Stodtmann, S., Lee, R.M., Weiler, C.K.F., Badinski, A.: Numerical simulation of organic semiconductor devices with high carrier densities. J. Appl. Phys. 112(11), 114–909 (2012)CrossRefGoogle Scholar
  13. van Mensfoort, S.L.M., Coehoorn, R.: Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys. Rev. B 78(8), 085–207 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Thomas Koprucki
    • 1
    Email author
  • Nella Rotundo
    • 1
  • Patricio Farrell
    • 1
  • Duy Hai Doan
    • 1
  • Jürgen Fuhrmann
    • 1
  1. 1.Weierstrass Institute (WIAS)BerlinGermany

Personalised recommendations