Optical and Quantum Electronics

, Volume 47, Issue 7, pp 1693–1702 | Cite as

Broadband and polarization insensitive design of terahertz absorber with high-index contrast grating on SOI chip



Simple design of a broadband terahertz absorber consisting of a high-index contrast grating (HCG) on a silicon-on-insulator chip is proposed. Large absorption (98.4 %) over a wavelength range of 66–84 \(\upmu \hbox {m}\) is obtained for normal incidence with large fabrication tolerance (\(14\,\upmu \hbox {m}\) grating period tolerance for grating height of \(2.6\,\upmu \hbox {m}\)). The absorption remains high (\(\sim \)98 %) for wide range of angle of incidence from \(0^{\circ }\) (normal incidence) to \(60^{\circ }\). The bandwidth of high absorption (\(\sim \)98 %) is also large i.e. \(40\,\upmu \hbox {m}\) over a wide range of angle of incidence from \(0^{\circ }\) to \(60^{\circ }\). The proposed broadband terahertz absorber also exhibits the design flexibility for the realization of polarization insensitivity with respect to the incident light of arbitrary polarizations. The proposed structure is easy-to-fabricate with a large fabrication tolerance which may provide a desirable broadband absorption for practical applications in terahertz devices. The proposed absorber is designed using rigorous coupled wave analysis and the results are in good agreement (with a maximum difference of 0.6 % in absorption) with those obtained with finite difference time domain method. The proposed characteristics of the device arise from the wavelength scalability and broadband nature of the HCG.


High-index contrast grating Terahertz absorber Polarization-insensitive absorber Broadband absorber 


  1. Bienstman, P., Vandersteegen, P., Baets, R.: Modelling gratings on either side of the substrate for light extraction in light-emitting diodes. Opt. Quantum Electr. 39(10–11), 797–804 (2007)CrossRefGoogle Scholar
  2. Chan, D.L.C., Soljacic, M., Joannopoulos, J.D.: Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006)ADSCrossRefGoogle Scholar
  3. Chang-Hasnain, C.J., Yang, W.: High contrast grating for integrated optoelectronics. Adv. Opt. Photon. 4, 379–440 (2012). doi: 10.1364/AOP.4.000379 CrossRefGoogle Scholar
  4. Chang-Hasnain, C.J., Zhou, Y., Michael, Huang, C.Y., Chase, C.: High contrast grating VCSELs. IEEE J. Sel. Top. Quant. Elect. 15(3), 869–878 (2009)Google Scholar
  5. Chase, C., Rao, Y., Hoffmann, W., Chang-Hasnain, C.J.: 1550 nm high contrast grating VCSEL. Opt. Express 18(15), 15461–15466 (2010)ADSCrossRefGoogle Scholar
  6. Chen, H.T., Padilla, W.J., Zide, J.M.O., Gossard, A.C., Taylor, A.J., Averitt, R.D.: Active terahertz metamaterial devices. Nature 444, 597–600 (2006)ADSCrossRefGoogle Scholar
  7. Cheng, C., Scherer, A., Tyan, R.C., Fainman, Y., Witzgall, G., Yablonovitch, E.: New fabrication techniques for high quality photonic crystals. J. Vac. Sci. Technol. B 15, 2764 (1997). doi: 10.1116/1.589723 CrossRefGoogle Scholar
  8. Gan, Q., Fu, Z., Ding, Y.J., Bartoli, F.J.: Bidirectional subwavelength slit splitter for THz surface plasmons. Opt. Express 15(26), 18050–18055 (2007)ADSCrossRefGoogle Scholar
  9. Hu, C., Zhao, Z., Chen, X., Luo, X.: Realizing near-perfect absorption at visible frequencies. Opt. Express 17(13), 11039–11044 (2009)ADSCrossRefGoogle Scholar
  10. John, S.: Strong localization of photons in certain disordered dielectric super-lattices. Phys. Rev. Lett. 58(20), 2486–2489 (1987)ADSCrossRefGoogle Scholar
  11. Karagodsky, V., Pesala, B., Chase, C., Hofmann, W., Koyama, F., Chang-Hasnain, C.J.: Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Opt. Express 18(2), 694–699 (2010)ADSCrossRefGoogle Scholar
  12. Koyama, F.: Engineering of angular dependence of high-contrast grating mirror for transverse mode control of VCSELs. In: Proceedings of SPIE 8995, High Contrast Metastructures III, 89950H (2014). doi: 10.1117/12.2042069
  13. Krauss, T.F., De La Rue, R.M.: Photonic crystals in the optical regime: past, present, future. Prog. Quantum Electron. 23(2), 51–96 (1999)ADSCrossRefGoogle Scholar
  14. Kumar, M.: Narrow bandwidth and polarization independent design of hollow waveguide in-plane mirror with ultra-wide tuning-range. Appl. Opt. 52(9), 1847–1851 (2014)ADSCrossRefGoogle Scholar
  15. Kumar, M., Chase, C., Karagodsky, V., Sakaguchi, T., Koyama, F., Chang, C.J.: Low birefringence and 2-D optical confinement of hollow waveguide with distributed bragg reflector and high-index-contrast grating. IEEE Photon. J. 1, 135 (2009)CrossRefMATHGoogle Scholar
  16. Landy, N.I., Bingham, C.M., Tyler, T., Jokerst, N., Smith, D.R., Padilla, W.J.: Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79, 125104 (2009)ADSCrossRefGoogle Scholar
  17. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402-1–207402-4 (2008)ADSCrossRefGoogle Scholar
  18. Liu, Y.H., Gu, S., Luo, C.R., Zhao, X.P.: Ultra-thin broadband metamaterial absorber. Appl. Phys. A 108(1), 19–24 (2012)ADSCrossRefGoogle Scholar
  19. Luo, H., Cheng, Y.Z., Gong, R.Z.: Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches. Eur. Phys. J. B. 81(4), 387–392 (2011)ADSCrossRefGoogle Scholar
  20. Ma, Y., Chen, Q., Grant, J., Saha, S.C., Khalid, A., Cumming, D.R.S.: A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 36(6), 945–947 (2011)ADSCrossRefMATHGoogle Scholar
  21. Mason, J.A., Allen, G., Podolskiy, V.A., Wasserman, D.: Strong coupling of molecular and mid-infrared perfect absorber resonances. IEEE Photon. Technol. Lett. 24(1), 31–33 (2012)ADSCrossRefGoogle Scholar
  22. Mateus, C.F.R., Huang, M., Chen, L., Chang-Hasnain, C.J., Suzuki, Y.: Broad-band mirror (1.12–1.62 m) using a subwavelength grating. IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004)Google Scholar
  23. Moharam M.G., Gaylord, T.K.: Rigorous coupled wave analysis of planar-grating diffraction. J. Opt. Soc. Am. B 71(7), 811–818 (1981)Google Scholar
  24. Oliveira, F., Barat, R., Shulkin, B., Federici, J.F., Gary, D., Zimdars, D.A.: Neural network analysis of terahertz spectra of explosives and bio-agents. Proc. SPIE 5070, 60–70 (2003)ADSCrossRefGoogle Scholar
  25. Tao, H., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D., Padilla, W.J.: A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)ADSCrossRefGoogle Scholar
  26. Tonouch, M.: Cutting-edge terahertz technology. Nat. Phot. 1 97–105 (2007)Google Scholar
  27. Wang, B.X., Wang, L.L., Wang, G.Z., Huang, W.Q., Fei Li, X., Zhai, X.: Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photon. Technol. Lett. 26(2), 111–114 (2014)Google Scholar
  28. Wang, B.X., Wang, L.-L., Wang, G.-Z., Wang, L., Zhai, X., Li, X.-F., Huang, W.-Q.: A simple nested metamaterial structure with enhanced bandwidth performance. Opt. Commun. 303(13), 13–14 (2013)ADSCrossRefGoogle Scholar
  29. Wu, J., Zhou, C., Yu, J., Cao, H., Li, S., Jia, W.: Polarization-independent absorber based on a cascaded metal-dielectric grating structure. IEEE Photon. Technol. Lett. 26(9), 949–952 (2014)Google Scholar
  30. Ye, Y., Jin, Y., He, S.: Omni-directional, broadband and polarization insensitive thin absorber in the terahertz regime. J. Opt. Soc. Am. B 27(3), 498–503 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia

Personalised recommendations