Optical and Quantum Electronics

, Volume 47, Issue 4, pp 883–891 | Cite as

Possibilities of achieving negative refraction in QCL-based semiconductor metamaterials in the THz spectral range

  • Nikola Vuković
  • Aleksandar Daničić
  • Jelena Radovanović
  • Vitomir Milanović
  • Dragan Indjin
Article

Abstract

One of the challenges in the design of metamaterials’ unit cells is the reduction of losses caused by the metallic inclusions. In order to overcome this obstacle, it has been proposed to use the active medium as the unit cell. Quantum cascade lasers are great candidates for the active medium materials since they are able to provide high values of optical gain. In this paper we investigate and compare two quantum cascade structures optimized for emission frequencies lower than 2 THz and simulate the effect of a strong magnetic field applied perpendicularly to the layers. Comprehensive description of conduction-band nonparabolicity is used to calculate the electronic structure, and subsequently evaluate the longitudinal optical phonon and interface roughness scattering rates and solve the system of rate equations which govern the distribution of carriers among the Landau levels. Once we assess the degree of population inversion, we have all the necessary information about the permittivity component along the growth direction of the structure and may determine the conditions under which the structure displays negative refraction.

Keywords

Semiconductor metamaterials Quantum cascade laser Magnetic field Negative refraction 

References

  1. Basu, P.: Theory of Optical Processes in Semiconductors: Bulk and Microstructures. Clarendon Press, Oxford (1997)Google Scholar
  2. Benz, A., Deutsch, C., Brandstetter, M., Andrews, A.M., Klang, P., Detz, H., Schrenk, W., Strasser, G., Unterreiner, K.: Terahertz active photonic crystals for condensed gas sensing. Sensors 11, 6003–6014 (2011)CrossRefGoogle Scholar
  3. Braun, M., Rossler, U.: Magneto-optic transitions and non-parabolicity parameters in the conduction band of semiconductors. J. Phys. C 18, 3356–3377 (1985)Google Scholar
  4. Daničić, A., Radovanović, J., Milanović, V., Ikonić, Z., Indjin, D.: Optimization and magnetic-field tunability of quantum cascade laser for applications in trace gas detection and sensing. J. Phys. D 43, 045101 (2010)CrossRefADSGoogle Scholar
  5. Daničić, A., Radovanović, J., Indjin, D., Ikonić, Z.: Modeling of electron relaxation processes and the optical gain in a magnetic field assisted THz quantum cascade laser. Phys. Scr. T149, 014017 (2012)CrossRefADSGoogle Scholar
  6. Ekenberg, U.: Nonparabolicity effects in a quantum well: sublevel shift, parallel mass and Landau levels. Phys. Rev. B 40, 7714–7726 (1989)CrossRefADSGoogle Scholar
  7. Ginzburg, P., Orenstein, M.: Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures. J. Appl. Phys. 103, 083105 (2008)CrossRefADSGoogle Scholar
  8. Grigorenko, A.N., Geim, A.K., Gleeson, H.F., Zhang, Y., Firsov, A.A., Khrushchev, I.Y., Petrovic, J.: Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005)CrossRefADSGoogle Scholar
  9. Jirauschek, C., Kubis, T.: Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 1, 011307 (2014)CrossRefADSGoogle Scholar
  10. Koehler, R., Tredicucci, A., Beltran, F., Beere, H.E., Linfield, E.H., Davis, A.G., Ritchie, D.A., Iotti, R.C., Rossi, F.: Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)CrossRefADSGoogle Scholar
  11. Kumar, S.: Recent progress in terahertz quantum cascade lasers. J. Sel. Top. Quantum Electron. 17, 38–47 (2011)CrossRefMATHGoogle Scholar
  12. Kumar, S., Williams, B.S., Hu, Q., Reno, J.: 1.9 THz quantum-cascade lasers with one-well injector. Appl. Phys. Lett. 88, 121123 (2006)CrossRefADSGoogle Scholar
  13. Liu, Z., Hon, P., Tavallaee, A.A., Itoh, T., Williams, B.S.: Terahertz composite right-left handed transmission-line metamaterial waveguides. Appl. Phys. Lett. 100, 071101 (2012)CrossRefADSGoogle Scholar
  14. Milanović, V., Radovanović, J., Ramović, S.: Influence of nonparabolicity on boundary conditions in semiconductor quantum wells. Phys. Lett. A 373, 3071 (2009)CrossRefADSMATHGoogle Scholar
  15. Panina, L.V., Grigorenko, A.N., Makhnovskiy, D.P.: Optomagnetic composite medium with conducting nanoelements. Phys. Rev. B 66, 155411 (2002)CrossRefADSGoogle Scholar
  16. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  17. Podolskiy, V.A., Narimanov, E.E.: Strongly anisotropic waveguide as a non-magnetc left-handed system. Phys. Rev. B 71, 201101R (2005)CrossRefADSGoogle Scholar
  18. Radovanović, J., Ramović, S., Daničić, A., Milanović, V.: Negative refraction in semiconductor metamaterials based on quantum cascade laser design for the mid- IR and THz spectral range. Appl. Phys. A 109, 763–768 (2012)CrossRefADSGoogle Scholar
  19. Scalari, G., Walhter, C., Fischer, M., Terazzi, R., Beere, H., Ritchie, D., Faist, J.: THz and sub-THz quantum cascade lsers. Laser Photonics Rev. 3, 45–66 (2009)CrossRefGoogle Scholar
  20. Scalari, G., Amanti, M., Walther, C., Terazzi, R., Fisher, M., Beck, M., Faist, J.: Broadband THz lasing from a photon–phonon quantum cascade laser. Opt. Express 18, 8043–8052 (2010)CrossRefGoogle Scholar
  21. Schmielau, T., Pereira, M.: Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Appl. Phys. Lett. 95, 231111 (1–3) (2009a)Google Scholar
  22. Schmielau, T., Pereira, M.: Impact of momentum dependent matrix elements on scattering effects in quantum cascade lasers. Phys. Stat. Sol. (b) 246, 329–331 (2009b)Google Scholar
  23. Schmielau, T., Pereira, M.: Momentum dependent matrix elements in quantum cascade lasers. Microelectron. J. 40, 869–871 (2009c)Google Scholar
  24. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRefADSGoogle Scholar
  25. Tavallaee, A.A., Hon, P.W.C., Mehta, K., Itoh, T., Williams, B.S.: Zero-index terahertz quantum-cascade metamaterial lasers. J. Quantum Electron. 46, 1091–1098 (2010)CrossRefADSGoogle Scholar
  26. Tavallaee, A.A., Hon, P.W.C., Chen, Q.-S., Itoh, T., Williams, B.S.: Active terahertz quantum-cascade composite right/left-handed metamaterial. Appl. Phys. Lett. 102, 021103 (2013)CrossRefADSGoogle Scholar
  27. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. Usp. 10, 509–514 (1968)CrossRefADSGoogle Scholar
  28. Wacker, A.: Quantum Cascade Laser: An Emerging Technology, Nonlinear Laser Dynamics. Wiley, Berlin (2011)Google Scholar
  29. Wacker, A., Lindskog, M., Winge, D.: Nonequilibrium Green’s functions model for simulation for quantum cascade laser devices under operating condition. IEEE J. Sel. Topics Quantum Electron. 19, 1200611 (2013)CrossRefGoogle Scholar
  30. Zhou, J., Koschny, Th, Kafesaki, M., Economou, E.N., Pendry, J.B., Soukoulis, C.M.: Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95, 223902 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nikola Vuković
    • 1
  • Aleksandar Daničić
    • 2
  • Jelena Radovanović
    • 1
  • Vitomir Milanović
    • 1
  • Dragan Indjin
    • 3
  1. 1.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.P* Group, Vinca Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  3. 3.School of Electronic and Electrical EngineeringUniversity of LeedsLeedsUK

Personalised recommendations