Optical and Quantum Electronics

, Volume 47, Issue 4, pp 865–872 | Cite as

Cubic GaN/AlGaN based quantum wells optimized for applications to tunable mid-infrared photodetectors

  • A. Radosavljević
  • J. Radovanović
  • V. Milanović
  • D. Indjin
Article

Abstract

We propose a method which delivers optimal cubic GaN/AlGaN quantum well profiles such that both the Stark effect and peak intersubband absorption from the ground to the first excited electronic state, in a prescribed range of bias electric fields, are maximized. Our method relies on the Genetic Algorithm which finds globally optimal structures with a predefined number of embedded layers. We investigate simple rectangular quantum wells with embedded step layers for applications in tunable mid-infrared photodetectors. The effects of band nonparabolicity are taken into account to refine our model.

Keywords

Quantum well Stark effect Intersubband absorption  Tunable photodetectors Genetic algorithm 

References

  1. Ariyawansa, G., Rinzan, M., Strassburg, M., Dietz, N., Perera, A., Matsik, S., Asghar, A., Ferguson, I., Luo, H., Liu, H.: GaN/AlGaN heterojunction infrared detector responding in 8–14 and 20–70 \(\mu \)m ranges. Appl. Phys. Lett. 89, 141122 (2006)CrossRefADSGoogle Scholar
  2. As, D.J.: Recent developments on non-polar cubic group III-nitrides for. SPIE Proc. Quantum Sens. Nanophotonic Devices VII 7608, 76080 (2010)CrossRefGoogle Scholar
  3. As, D.J., Mietze, C.: MBE growth and applications of cubic AlN/GaN quantum wells. Phys. Status Solidi A 210, 474–479 (2013)CrossRefADSGoogle Scholar
  4. Beeler, M., Trichas, E., Monroy, E.: III-nitride semiconductors for intersubband optoelectronics: a review. Semicond. Sci. Technol. 28, 074022 (2013)CrossRefADSGoogle Scholar
  5. Chemla, D.S., Shah, J.: Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001)CrossRefADSGoogle Scholar
  6. DeCuir Jr, E.A., Fred, E., Manasreh, M., Schörmann, J., As, D., Lischka, K.: Near-infrared intersubband absorption in nonpolar cubic GaN/AlN. Appl. Phys. Lett. 91, 041911 (2007)Google Scholar
  7. DeCuir Jr, E.A., Manasreh, M., Tschumak, E., Schörmann, J., As, D., Lischka, K.: Cubic GaN/AlN multiple quantum well photodetector. Appl. Phys. Lett. 92, 201910 (2008)Google Scholar
  8. Kandaswamy, P., Machhadani, H., Bougerol, C., Sakr, S., Tchernycheva, M., Julien, F., Monroy, E.: Midinfrared intersubband absorption in GaN/AlGaN superlattices on Si(111) templates. Appl. Phys. Lett. 95, 141911 (2009)CrossRefADSGoogle Scholar
  9. Machhadani, H., Kandaswamy, P., Sakr, S., Vardi, A., Wirtmüller, A., Nevou, L., Guillot, F., Pozzovivo, G., Tchernycheva, M., Lupu, A., Vivien, L., Crozat, P., Warde, E., Bougerol, C., Schacham, S., Strasser, G., Bahir, G., Monroy, E., Julien, F.: GaN/AlGaN intersubband optoelectronic devices. New J. Phys. 11, 125023 (2009)CrossRefADSGoogle Scholar
  10. Machhadani, H., Tchernycheva, M., Sakr, S., Rigutti, L., Colombelli, R., Warde, E., Mietze, C., As, D., Julien, F.: Intersubband absorption of cubic GaN/Al(Ga)N quantum wells in the near-infrared to terahertz spectral range. Phys. Rev. B 83, 075313 (2011)CrossRefADSGoogle Scholar
  11. Mietze, C., DeCuir Jr, E.A., Manasreh, M.O., Lischka, K., As, D.J.: Intrasubband transitions in cubic AlN/GaN superlattices for detectors from near to far infrared. Phys. Status Solidi C 8, 1204–1207 (2011)CrossRefADSGoogle Scholar
  12. Mohammad, S., Morkoç, H.: Progress and prospects of group-III nitride semiconductors. Prog. Quantum Electron. 20, 361–525 (1996)CrossRefADSGoogle Scholar
  13. Morkoç, H.: Handbook of Nitride Semiconductors and Devices. Wiley, Weinheim (2008)Google Scholar
  14. Radosavljević, A., Radovanović, J., Milanović, V.: Optimization of cubic GaN/AlGaN quantum well-based structures. Solid State Commun. 182, 38–42 (2014)CrossRefADSGoogle Scholar
  15. Radovanović, J., Milanović, V., Ikonić, Z., Inđin, D.: Optimal design of GaN-AlGaN Bragg-confined structures for intersubband absorption in the near-infrared spectral range. IEEE J. Quantum Electron. 39, 1297–1304 (1998)CrossRefADSGoogle Scholar
  16. Radovanović, J., Milanović, V., Ikonić, Z., Inđin, D.: Quantum-well profile optimization for maximal stark effect and application to tunable infrared photodetectors. J. Appl. Phys. 91, 525–527 (2002)CrossRefADSGoogle Scholar
  17. Schmielau, T., Pereira, M.: Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Appl. Phys. Lett. 95, 231111 (2009)CrossRefADSGoogle Scholar
  18. Schmielau, T., Pereira, M.: Impact of momentum dependent matrix elements on scattering effects in quantum cascade lasers. Phys. Stat. Sol. (b) 246, 329–331 (2009)Google Scholar
  19. Schmielau, T., Pereira, M.: Momentum dependent matrix elements in quantum cascade lasers. Microelectron. J. 40, 869–871 (2009)Google Scholar
  20. Schmitt-Rink, S., Ell, C., Haug, H.: Many-body effects in absorption, gain and luminescence spectra of semiconductor quantum-well structures. Phys. Rev. B 33, 1183–1189 (1986)Google Scholar
  21. Schörmann, J.: Cubic AlGaN/GaN Structures for Device Application. Paderborn University (Dissertation) (2007)Google Scholar
  22. Sirtori, C., Capasso, F., Faist, J., Scandolo, S.: Nonparabolicity and a sum rule associated with bound-tobound and bound-to-continuum intersubband transitions in quantum wells. Phys. Rev. B 50, 8663–8674 (1994)CrossRefADSGoogle Scholar
  23. Westmeyer, A., Mahajan, S., Bajaj, K., Lin, J., Jiang, H., Koleske, D., Senger, R.: Determination of energy-band offsets between GaN and AlN. J. Appl. Phys. 99, 013705 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Radosavljević
    • 1
    • 2
  • J. Radovanović
    • 1
  • V. Milanović
    • 1
  • D. Indjin
    • 3
  1. 1.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.P* Group, Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  3. 3.School of Electronic and Electrical EngineeringUniversity of LeedsLeedsUK

Personalised recommendations