Optical and Quantum Electronics

, Volume 46, Issue 10, pp 1283–1289 | Cite as

Design of spectral crosstalk suppressing structure in two-color HgCdTe infrared focal plane arrays detector

  • Z. H. Ye
  • P. Zhang
  • Y. Li
  • Y. Y. Chen
  • S. M. Zhou
  • Y. Huang
  • C. H. Sun
  • C. Lin
  • X. N. Hu
  • R. J. Ding
  • L. He
Article

Abstract

Spectral crosstalk suppressing design of two-color HgCdTe medium-wave/long-wave (MW/LW) \(\hbox {n}^{+}\)\(\hbox {p}_{1}\)\(\hbox {P}_{2}\)\(\hbox {P}_{3}\)\(\hbox {N}^{+}\) infrared focal plane arrays (IRFPAs) detector functioning in simultaneous mode is carried out in this study, using Crosslight Technology Computer Aided Design (TCAD) software. A compositional barrier of \(\hbox {P}_{2}\)-region sandwiched between LW absorption layer of \(\hbox {p}_{1}\)-region and MW absorption layer of \(\hbox {P}_{3}\)-region is designed to suppress spectral crosstalk. MW-to-LW crosstalk can be significantly suppressed to 2.1 % while LW-to-MW crosstalk can be maintained less than 1 % by integrating an optimized compositional barrier.

Keywords

Two-color IRFPAs detector HgCdTe Compositional barrier  Spectral crosstalk 

References

  1. Bellotti, E., Orsogna, D.: Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors. IEEE. JQE. 42, 418–426 (2006)CrossRefGoogle Scholar
  2. Chen, Y.G., Hu, W.D., Chen, X.S., Wang, J., Wang, X.F., Yu, C.H., Lu, W.: Temperature dependence on photosensitive area extension in HgCdTe photodiodes using laser beam induced current. Opt. Eng. 51, 036401 (2012)CrossRefADSGoogle Scholar
  3. Guo, N., Hu, W.D., Chen, X.S., Lei, W., Lv, Y.Q., Zhang, X.L., Si, J.J., Lu, W.: Investigation of radiation collection by the InSb infrared focal plane arrays with micro-optic structures. J. Electron. Mater. (2013). doi:10.1007/s11664-013-2712-y
  4. Guo, N., Hu, W.D., Chen, X.S., Meng, C., Lv, Y.Q., Lu, W.: Optimization of microlenses for InSb infrared focal-plane arrays. J. Electron. Mater. 40, 1647–1650 (2011)CrossRefADSGoogle Scholar
  5. Guo, N., Hu, W.D., Chen, X.S., Lei, W., Lv, Y.Q., Zhang, X.L., Si, J.J., Lu, W.: Optimization for midwavelength InSb infrared focal plane arrays under front-side illumination. Opt. Quantum Electron. 45, 673–679 (2013)CrossRefGoogle Scholar
  6. Hu, W.D., Chen, X.S., Ye, Z.H., Feng, A.L., Yin, F., Zhang, B., Liao, L., Lu, W.: Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays. IEEE J. Sel. Topics Quantum Electron. 19, 4100107 (2013)CrossRefGoogle Scholar
  7. Jozwikowski, K., Rogalski, A.: Computer modeling of dual-band HgCdTe photovoltaic detectors. J. Appl. Phys. 90, 1286–1291 (2001)CrossRefADSGoogle Scholar
  8. Li, Y., Ye, Z.H., Lin, C., Hu, X.N., Ding, R.J., He, L.: Parameter determination from current–voltage characteristics of HgCdTe photodiodes in forward bias region. Opt. Quantum Electron. 45, 641–648 (2013)CrossRefGoogle Scholar
  9. Norton, P.R.: Status of infrared detectors. Proc. SPIE. 3379, 102 (1998)CrossRefADSGoogle Scholar
  10. Norton, P.R.: Infrared detectors in the next millennium. Proc. SPIE. 3698, 652 (1999)CrossRefADSGoogle Scholar
  11. Reine, M.B., Hairston, A., O’Dette, P., Tobin, S.P., Smith, F.T.J., Musican, B.L.: Simultaneous MW/LW dual-band MOVPE HgCdTe 64 \(\times \) 64 FPAs. Proc. SPIE. 3379, 200–212 (1998)CrossRefADSGoogle Scholar
  12. Wang, J., Chen, X.S., Hu, W.D., Wang, L., Lu, W., Xu, F.Q., Zhao, J., Shi, Y.L., Ji, R.B.: Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200 K. Appl. Phys. Lett. 99, 113508 (2011)CrossRefADSGoogle Scholar
  13. Wehner, J.G.A., Smith, E.P.G., Radford, W., Mears, C.L.: Crosstalk Modeling of Small-Pitch Two-Color HgCdTe Photodetectors. J. Electron. Mater. 41, 2925–2927 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Z. H. Ye
    • 1
  • P. Zhang
    • 1
    • 2
  • Y. Li
    • 1
    • 2
  • Y. Y. Chen
    • 1
    • 2
  • S. M. Zhou
    • 1
  • Y. Huang
    • 1
  • C. H. Sun
    • 1
  • C. Lin
    • 1
  • X. N. Hu
    • 1
  • R. J. Ding
    • 1
  • L. He
    • 1
  1. 1.Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations