Design of spectral crosstalk suppressing structure in two-color HgCdTe infrared focal plane arrays detector
Article
First Online:
Received:
Accepted:
- 155 Downloads
- 2 Citations
Abstract
Spectral crosstalk suppressing design of two-color HgCdTe medium-wave/long-wave (MW/LW) \(\hbox {n}^{+}\)–\(\hbox {p}_{1}\)–\(\hbox {P}_{2}\)–\(\hbox {P}_{3}\)–\(\hbox {N}^{+}\) infrared focal plane arrays (IRFPAs) detector functioning in simultaneous mode is carried out in this study, using Crosslight Technology Computer Aided Design (TCAD) software. A compositional barrier of \(\hbox {P}_{2}\)-region sandwiched between LW absorption layer of \(\hbox {p}_{1}\)-region and MW absorption layer of \(\hbox {P}_{3}\)-region is designed to suppress spectral crosstalk. MW-to-LW crosstalk can be significantly suppressed to 2.1 % while LW-to-MW crosstalk can be maintained less than 1 % by integrating an optimized compositional barrier.
Keywords
Two-color IRFPAs detector HgCdTe Compositional barrier Spectral crosstalkReferences
- Bellotti, E., Orsogna, D.: Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors. IEEE. JQE. 42, 418–426 (2006)CrossRefGoogle Scholar
- Chen, Y.G., Hu, W.D., Chen, X.S., Wang, J., Wang, X.F., Yu, C.H., Lu, W.: Temperature dependence on photosensitive area extension in HgCdTe photodiodes using laser beam induced current. Opt. Eng. 51, 036401 (2012)CrossRefADSGoogle Scholar
- Guo, N., Hu, W.D., Chen, X.S., Lei, W., Lv, Y.Q., Zhang, X.L., Si, J.J., Lu, W.: Investigation of radiation collection by the InSb infrared focal plane arrays with micro-optic structures. J. Electron. Mater. (2013). doi: 10.1007/s11664-013-2712-y
- Guo, N., Hu, W.D., Chen, X.S., Meng, C., Lv, Y.Q., Lu, W.: Optimization of microlenses for InSb infrared focal-plane arrays. J. Electron. Mater. 40, 1647–1650 (2011)CrossRefADSGoogle Scholar
- Guo, N., Hu, W.D., Chen, X.S., Lei, W., Lv, Y.Q., Zhang, X.L., Si, J.J., Lu, W.: Optimization for midwavelength InSb infrared focal plane arrays under front-side illumination. Opt. Quantum Electron. 45, 673–679 (2013)CrossRefGoogle Scholar
- Hu, W.D., Chen, X.S., Ye, Z.H., Feng, A.L., Yin, F., Zhang, B., Liao, L., Lu, W.: Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays. IEEE J. Sel. Topics Quantum Electron. 19, 4100107 (2013)CrossRefGoogle Scholar
- Jozwikowski, K., Rogalski, A.: Computer modeling of dual-band HgCdTe photovoltaic detectors. J. Appl. Phys. 90, 1286–1291 (2001)CrossRefADSGoogle Scholar
- Li, Y., Ye, Z.H., Lin, C., Hu, X.N., Ding, R.J., He, L.: Parameter determination from current–voltage characteristics of HgCdTe photodiodes in forward bias region. Opt. Quantum Electron. 45, 641–648 (2013)CrossRefGoogle Scholar
- Norton, P.R.: Status of infrared detectors. Proc. SPIE. 3379, 102 (1998)CrossRefADSGoogle Scholar
- Norton, P.R.: Infrared detectors in the next millennium. Proc. SPIE. 3698, 652 (1999)CrossRefADSGoogle Scholar
- Reine, M.B., Hairston, A., O’Dette, P., Tobin, S.P., Smith, F.T.J., Musican, B.L.: Simultaneous MW/LW dual-band MOVPE HgCdTe 64 \(\times \) 64 FPAs. Proc. SPIE. 3379, 200–212 (1998)CrossRefADSGoogle Scholar
- Wang, J., Chen, X.S., Hu, W.D., Wang, L., Lu, W., Xu, F.Q., Zhao, J., Shi, Y.L., Ji, R.B.: Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200 K. Appl. Phys. Lett. 99, 113508 (2011)CrossRefADSGoogle Scholar
- Wehner, J.G.A., Smith, E.P.G., Radford, W., Mears, C.L.: Crosstalk Modeling of Small-Pitch Two-Color HgCdTe Photodetectors. J. Electron. Mater. 41, 2925–2927 (2012)CrossRefADSGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2013