Optical and Quantum Electronics

, Volume 46, Issue 10, pp 1195–1201 | Cite as

Physical modeling and simulation of a high-performance charge sensitive infrared phototransistor

  • L. Ding
  • P. Xu
  • Y. Q. Li
  • F. M. Guo


Charge sensitive infrared phototransistors are well known for their capability for response spectrum tuning and single photon detection. In this paper, we established a physical model for a charge sensitive infrared phototransistor operating at \(45\,\upmu \hbox {m}\) wavelength using Crosslight Apsys software. Several key physical mechanisms involved such as inter-subband optical transition and resonant tunneling of carriers were applied and fine tuned to obtain a better simulation result. The calculated absorption spectrum and the simulated data graphs demonstrate that this cell can be used for long wavelength detection with relatively high sensitivity.


Charge sensitive infrared phototransistor (CSIP) APSYS Terahertz Quantum well Two-dimensional electron gas (2DEG) 



This work was supported by National Scientific Research Plan (2006CB932802, 2011CB932903) and State Scientific and Technological Commission of Shanghai (Nos. 078014194, 118014546).


  1. An, Z.H., Chen, J.C., Ueda, T., et al.: Infrared phototransistor using capacitively coupled two-dimensional electron gas layers. Appl. Phys. Lett. 86, 172106 (2005)CrossRefADSGoogle Scholar
  2. An, Z.H., Ueda, T., Hirakawa, K., Komiyama, S.: Reset operation of quantum-well infrared phototransistors. IEEE Trans. Electron Devices 54(7), 1776–1780 (2007)CrossRefADSGoogle Scholar
  3. APSYS User’s Manual. (2011)
  4. Crowe, T.W., Globus, T., Woolard, D.L., et al.: Terahertz sources and detectors and their application to biological sensing. Philos. Trans. Royal Soc. Lond. Ser. Math. Phys. Eng. Sci. 362(1815), 365–374 (2004)CrossRefADSGoogle Scholar
  5. Fan, L., Ding, L., Weng, Q.C.: Nano-device modeling for charge-sensitive infrared photodetector used in very long wavelength and THz. Integr. Ferroelectr. 145(1), 88–93 (2013)CrossRefGoogle Scholar
  6. Guo, N., Hu, W.D., Chen, X.S., et al.: Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates. Opt. Express 21, 1606–1614 (2013)CrossRefADSGoogle Scholar
  7. Hu, W.D., Wang, L., Chen, X.S., et al.: Room-temperature plasmonic resonant absorption for grating-gate GaN HEMTs in far infrared terahertz domain. Opt. Quantum Electron. 45, 713–720 (2013)CrossRefGoogle Scholar
  8. Humphreys, K., Loughran, J.P., Gradziel, M., et al.: Medical applications of Terahertz Imaging: a review of current technology and potential applications in biomedical engineering. In; Conference Proceedings, 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, 1302–1305 (2004)Google Scholar
  9. Levine, B.F., Zussman, A., Gunapala, S.D., et al.: Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors. J. Appl. Phys. 72, 4429–4443 (1992)CrossRefADSGoogle Scholar
  10. Li, N., Guo, F.M., Zhen, H.L., et al.: Detection wavelengths and photocurrents of very long wavelength quantum-well infrared photodetector. Infrared Phys. Technol. 47, 29–36 (2005)CrossRefADSGoogle Scholar
  11. Liu, H.C., Song, C.Y., SpringThorpe, A.J., Cao, J.C.: Terahertz quantum-well photodetector. Appl. Phys. Lett. 84(20), 4068–4070 (2004)CrossRefADSGoogle Scholar
  12. Liu, X.Q., Li, N., Chen, X.S., et al.: Wavelength tuning of GaAs/AlGaAs quantum-well infrared photodetectors by thermal interdiffusion. Japn. J. Appl. Phys. 38, 5044–5045 (1999)CrossRefADSGoogle Scholar
  13. Lu, W., Mu, Y.M., Liu, X.Q., et al.: Direct observation of above-quantum-step quasibound state in \(\text{ GaAs }/\text{ Al }_{x}\text{ Ga }_{1-x}\)/vacuum heterostructures. Phys. Rev. B 57, 9787–9791 (1998)CrossRefADSGoogle Scholar
  14. Piprek, J.: Semiconductor optoelectronic devices: introduction to physics and simulation. Elsevier, Amsterdam (2003)Google Scholar
  15. Ueda, T., Komiyama, S.: Novel ultra-sensitive detectors in the 10–50 \(\upmu \)m Wavelength Range. Sensors 10, 8411–8423 (2010)CrossRefGoogle Scholar
  16. Ueda, T., Soh, Y., Nagai, N., et al.: Charge-sensitive infrared phototransistors developed in the wavelength range of 10–50 \(\upmu \)m. Japn. J. Appl. Phys. 50, 020208 (2011)CrossRefADSGoogle Scholar
  17. Wang, Z.H., Komiyama, S., Ueda, T., Nagai, N.: A modified scheme of charge sensitive infrared phototransistor. Appl. Phys. Lett. 95, 022112 (2009)CrossRefADSGoogle Scholar
  18. Wang, Z.H., Komiyama, S., Ueda, T., et al.: Charge sensitive infrared phototransistor for 45 \(\upmu \)m wavelength. J. Appl. Phys. 107, 094508 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratory of Polar Materials and Devices, School of Information Science and TechnologyEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations