Optical and Quantum Electronics

, Volume 46, Issue 7, pp 897–909 | Cite as

An ultra-small heterostructure wavelength division multiplexer (WDM) with the ability to select two wavelengths from the s-band

  • Abdollah Amirkhani
  • Meysam Niyazi
  • Mohammad Reza Mosavi
Original Paper


In this article, a photonic crystal channel drop filter (CDF) based on \(2\times 3\) ring resonators is presented. At first, the effects of changing the radius of lattice rods and the lattice dielectric constant on the dropping efficiency of a 3-port CDF with one resonator are investigated. Then by developing this base structure, a new 4-port heterostructure CDF composed of two regions with rods made of silicone and germanium is presented, which can operate in the ‘S’ band of the communication window. The photonic crystal heterostructure CDF consists of a horizontal waveguide and two ring resonators that have been installed, in symmetry to the horizontal axis, in two regions with different refractive indices. These ring resonators act as energy couplers and capture at their resonant frequencies the electromagnetic energy which is propagated in the bus waveguide. For the analysis of transmission characteristics and the band structure of the filter, two methods have been employed: the two-dimensional Finite–difference time domain method and the Plane Wave Expansion method. In the final structure, dropping efficiencies of 97 and 89 % can be achieved at ports D and B, respectively, and also an acceptable quality factor can be obtained in the communication window. The overall size of this device is 174.14 \(\upmu \hbox {m}^{2}\). Due to its small size, this structure can be used in Wavelength Division Multiplexer applications in the Optical Integrated Circuits.


Finite-difference time domain method Ring resonators   Plane wave expansion method Multiplexer Optical integrated circuits 


  1. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys 114(2), 185–200 (1994)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. Cheng, S.C., Wang, J.Z., Chen, L.W., Wang, C.C.: Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units. Optik-Int. J. Light Electron Opt. 123(21), 1928–1933 (2012)CrossRefGoogle Scholar
  3. Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: A new broadband photonic crystal add drop filter. J. Appl. Sci. 8(11), 2178–2182 (2008)CrossRefGoogle Scholar
  4. Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Optik-Int. J. Light Electron Opt. 123(2), 167–170 (2012)CrossRefGoogle Scholar
  5. Dmitriev, V., Kawakatsu, M.N., Portela, G.: Compact optical switch based on 2D photonic crystal magneto-optical cavity. Opt. Lett. 38, 1016–1018 (2013)ADSCrossRefGoogle Scholar
  6. Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Channel drop tunneling through localized states. Phys. Rev. Lett. 80(5), 960–963 (1998)ADSCrossRefGoogle Scholar
  7. Gomyo, A., Ushida, J., Shirane, M.: Highly drop-efficient channel-drop optical filters with Si-based photonic crystal slabs. Thin Solid Films 508(1–2), 422–425 (2006)ADSCrossRefGoogle Scholar
  8. Hsiao, F.L., Lee, C.: A nano ring resonator based on 2D hexagonal lattice photonic crystal. In: IEEE Conference on Optical MEMS and Nanophotonics, pp. 107–108 (2009)Google Scholar
  9. Hwang, K., Song, G.H.: Design of a high-Q channel add-drop multiplexer based on the two-dimensional photonic-crystal membrane structure. Opt. Express 13(6), 1948–1957 (2005)ADSCrossRefGoogle Scholar
  10. Inoue, K., Ohtaka, K.: Photonic Crystals: Physics, Fabrication and Applications. Springer, Berlin (2004)CrossRefGoogle Scholar
  11. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton, NJ (2008)Google Scholar
  12. Kang, C., Weiss, S.M.: Photonic crystal with multiple-hole defect for sensor applications. Opt. Express 16(22), 18188–18193 (2008)ADSCrossRefGoogle Scholar
  13. Kim, S.H., Ryu, H.Y., Park, H.G., Kim, G.H., Choi, Y.S., Lee, Y.H.: Two-dimensional photonic crystal hexagonal waveguide ring laser. Appl. Phys. Lett. 81(14), 2499–2501 (2002)ADSCrossRefGoogle Scholar
  14. Kim, S., Park, I., Lim, H., Kee, C.: Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback. Opt. Express. 12(22), 5518–5525 (2004)ADSCrossRefGoogle Scholar
  15. Kumar, V.D., Srinivas, T., Selvarajan, A.: Investigation of ring resonators in photonic crystal circuits. Photonics Nanostruct. 2(3), 199–206 (2004)ADSCrossRefGoogle Scholar
  16. Li, L., Liu, G. Q. : Photonic crystal ring resonator channel drop filter. Optik-Int. J. Light Electron Opt. in press (2012)Google Scholar
  17. Little, B.E., Foresi, J.S., Steinmeyer, G., Thoen, E.R., Chu, S.T., Haus, H.A., Ippen, E.P., Kimerling, L.C., Greene, W.: Ultra-compact Si–SiO microring resonator optical channel dropping filters. IEEE Photonics Technol. Lett. 10(4), 549–551 (1998)ADSCrossRefGoogle Scholar
  18. Lourtiozs, J.M., Benisty, H., Berger, V., Greard, J.M., Maystre, D., Tchelnokov, A.: Photonic Crystals: Towards Nanoscale Photonic Devices. Springer, Berlin (2005)Google Scholar
  19. Ma, Z., Ogusu, K.: Channel drop filters using photonic crystal Fabry–Perot resonators. Opt. Commun. 284(5), 1192–1196 (2011)ADSCrossRefGoogle Scholar
  20. Manolatou, C., Khan, M.J., Fan, S., Villeneuve, P.R., Haus, H.A., Joannopoulos, J.D.: Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron. 35(9), 1322–1331 (1999)ADSCrossRefGoogle Scholar
  21. Mohmoud, M.Y., Bassou, Z.M., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285(3), 368–372 (2012)ADSCrossRefGoogle Scholar
  22. Monifi, F., Ghaffari, A., Djavid, M., Abrishamian, M.S.: Three output port channel-drop filter based on photonic crystals. Appl. Opt. 48(4), 804–809 (2009)CrossRefGoogle Scholar
  23. Monifi, F., Friedlein, J., Ozdemir, S.K., Yang, L.: A robust and tunable add-drop filter using whispering gallery mode microtoroid resonator. IEEE. J. Lightwave Technol. 30(21), 3306–3315 (2012)ADSCrossRefGoogle Scholar
  24. Noda, S., Chutinan, A., Imada, M.: Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000)ADSCrossRefGoogle Scholar
  25. Noda, S., Song, B.S., Akahane, Y., Asano, T.: In-plane Hetero Photonic Crystals. Technical Digest of International Symposium on Photonic and Electronic Crystal Structures V, Kyoto, Japan (2004)Google Scholar
  26. Park, J.W., Park, S., Kim, G.: Transient analysis of static and dynamic responses for a single ring-resonator-based WDM add/drop filter array. Opt. Quantum Electron. 44(15), 731–740 (2012)CrossRefGoogle Scholar
  27. Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)ADSCrossRefGoogle Scholar
  28. Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15(4), 1823–1831 (2007)ADSCrossRefGoogle Scholar
  29. Qiu, M., Jaskorzynska, B.: Design of a channel drop filter in a two-dimensional triangular photonic crystal. Appl. Phys. Lett. 83(6), 1074–1076 (2003)ADSCrossRefGoogle Scholar
  30. Robinson, S., Nakkeeran, R. : PCRR based add drop filter for ITU-TG.694.2 CWDM systems. Optik-Int. J. Light Electron Opt. in press (2012)Google Scholar
  31. Robinson, S., Nakkeeran, R. : Two dimensional photonic crystal ring resonator based add drop filter for CWDM systems. Optik-Int. J. Light Electron Opt. in press (2012)Google Scholar
  32. RomeroVivasl, J., Chigrin, D.N., Lavrinenko, A.V., Torres, C.M.S.: Resonant add-drop filter based on a photonic quasicrystal. Opt. Express 13(3), 826–835 (2005)ADSCrossRefGoogle Scholar
  33. Song, B., Asano, T., Akahane, Y., Noda, S.: Role of interfaces in hetero photonic crystals for manipulation of photons. Phys. Rev. B 71(19), 195101–195105 (2005)ADSCrossRefGoogle Scholar
  34. Taflove, A., Hagness, S.C.: Computational Electrodynamics the Finite-Difference Time-Domain Method, 3rd edn, p. 1006. Artech House, London (2002)Google Scholar
  35. Tameh, T.A., Isfahani, B.M., Granpayeh, N., Javan, A.M.: Improving the performance of all-optical switching based on nonlinear photonic crystal microring resonators. AEU Int. J. Electron. Commun. 65(4), 281–287 (2011)CrossRefGoogle Scholar
  36. Toccafondo, V., Garcia-Ruperez, J., Banuls, M.J., Griol, A., Castello, J.G., Peransi-Liopis, S., Maquieira, A.: Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor. Opt. Lett. 35(21), 3673–3675 (2010)ADSCrossRefGoogle Scholar
  37. Tomljenovic-Hanic, S., Rahmani, A., Steel, M.J., Sterke, C.M.D.: Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors. Opt. Express 17(17), 14552–14557 (2009)ADSCrossRefGoogle Scholar
  38. Van, V., Ibrahim, T.A., Ritter, K., Absil, P.P., Johnson, F.G., Grover, R., Goldhar, J., Ho, P.: All-optical nonlinear switching in GaAs-AlGaAs microring resonators. IEEE Photonics Technol. Lett. 14(1), 74–76 (2002)ADSCrossRefGoogle Scholar
  39. Vasconcelos, M.S., Mauriz, P.W., Albuquerque, E.L.: Optical filters based in quasi periodic photonic crystal. Microelectron. J. 40, 851–853 (2009)CrossRefGoogle Scholar
  40. Wang, C.C., Chen, L.W.: Channel drop filters with floded directional couplers in two-dimensional photonic crystals. Physica B 405(4), 1210–1215 (2010)ADSCrossRefGoogle Scholar
  41. Xu, Q., Lipson, M.: All-optical logic based on silicon micro-ring resonators. Opt. Express 15(3), 924–929 (2007)ADSCrossRefGoogle Scholar
  42. Zhang, W., Liu, J., Zhao, W.: Design of a compact photonic-crystal-based polarization channel drop filter. IEEE Photonics Technol. Lett. 21(11), 739–741 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Abdollah Amirkhani
    • 1
  • Meysam Niyazi
    • 2
  • Mohammad Reza Mosavi
    • 1
  1. 1.Department of Electrical EngineeringIran University of Science and TechnologyNarmak, TehranIran
  2. 2.Department of Electrical and Computer EngineeringUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations