Optical and Quantum Electronics

, Volume 46, Issue 3, pp 477–490 | Cite as

Semi-guided plane wave reflection by thin-film transitions for angled incidence

  • Fehmi Çivitci
  • Manfred Hammer
  • Hugo J. W. M. Hoekstra
Article

Abstract

The non-normal incidence of semi-guided plane waves on step-like or tapered transitions between thin film regions with different thicknesses, an early problem of integrated optics, is being reconsidered. As a step beyond the common effective index picture, we compare two approaches on how this problem can be tackled—at least approximately—by nowadays readily available simulation tools for integrated optics design. Accepting the scalar approximation, using an ansatz of harmonic field dependence on the position along the interface, the 3-D problem reduces to a 2-D Helmholtz problem, for guided wave input and transparent-influx boundary conditions, with an effective permittivity that depends on the incidence angle. Alternatively, one complements the structure with a second mirrored interface, such that the 2-D cross section of a wide multimode rib waveguide emerges. Constraints for transverse resonance then permit to translate the propagation constants of its polarized modes into discrete samples of the phase changes experienced by an in-plane guided wave upon total internal reflection at the sidewalls.

Keywords

Integrated optics Slab waveguides Thin-film transitions  Numerical/analytical modeling 

References

  1. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  2. Çivitci, F., Hammer, M., Hoekstra, H.J.W.M.: Design of a prism spectrometer based on adiabatically connected waveguiding slabs. J. Lightw. Technol. (submitted for publication, 2013)Google Scholar
  3. Çivitci, F., Hammer, M., Hoekstra, H.J.W.M.: Reflection of semi-guided plane waves at angled thin-film transitions. XXI International Workshop on Optical Wave & Waveguide Theory and Numerical Modeling, Enschede, The Netherlands (2013)Google Scholar
  4. Çivitci, F., Hoekstra, H.J.W.M.: Design of spectrometers and polarization splitters using adiabatically connected slab waveguides. In: 16th European Conference on Integrated Optics, ECIO 2012, Sitges/Barcelona, Spain, p. 151 (2012)Google Scholar
  5. FieldDesigner: Advanced optical mode solvers. PhoeniX Software, P.O. Box 545, 7500 AM Enschede, The Netherlands. http://www.phoenixbv.com
  6. FIMMWAVE: Waveguide Mode Solvers. Photon Design, 34 Leopold Street, Oxford OX4 1TW, UK. http://www.photond.com/
  7. Hammer, M.: METRIC—Mode expansion tools for 2D rectangular integrated optical circuits. http://www.math.utwente.nl/~hammerm/Metric/
  8. Hammer, M.: Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics. Opt. Commun. 235(4–6), 285–303 (2004)Google Scholar
  9. Hammer, M., Ivanova, O.V.: Effective index approximations of photonic crystal slabs: a 2-to-1-D assessment. Opt. Quantum Electron. 41(4), 267–283 (2009)CrossRefGoogle Scholar
  10. Lohmeyer, M.: Wave-matching method for mode analysis of dielectric waveguides. Opt. Quantum Electron. 29, 907–922 (1997)CrossRefGoogle Scholar
  11. Lotsch, H.K.V.: Reflection and refraction of a beam of light at a plane interface. J. Opt. Soc. Am. 58(4), 551–561 (1968)ADSCrossRefGoogle Scholar
  12. Misawa, S., Aoki, M., Fujita, S., Takaura, A., Kihara, T., Yokomori, K., Funato, H.: Focusing waveguide mirror with a tapered edge. Appl. Opt. 33(16), 3365–3370 (1994)ADSCrossRefGoogle Scholar
  13. Righini, G.C., Russo, V., Sottini, S., Toraldo di Francia, G.: Geodesic lenses for guided optical waves. Appl. Opt. 12(7), 1477–1481 (1973)ADSCrossRefGoogle Scholar
  14. Righini, G.C., Molesini, G.: Design of optical-waveguide homogeneous refracting lenses. Appl. Opt. 27(20), 4193–4199 (1988)ADSCrossRefGoogle Scholar
  15. Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman and Hall, London (1983)Google Scholar
  16. Sudbø, A.S.: Film mode matching: a versatile numerical method for vector mode fields calculations in dielectric waveguides. Pure Appl. Opt. 2, 211–233 (1993)ADSCrossRefGoogle Scholar
  17. Tien, P.K.: Integrated optics and new wave phenomena in optical waveguides. Rev. Mod. Phys. 49(2), 361–419 (1977)ADSCrossRefGoogle Scholar
  18. Tseng, C.-C., Tsang, W.-T., Wang, S.: A thin-film prism as a beam separator for multimode guided waves in integrated optics. Opt. Commun. 13(3), 342–346 (1975)ADSCrossRefGoogle Scholar
  19. Ulrich, R., Martin, R.J.: Geometrical optics in thin film light guides. Appl. Opt. 10(9), 2077–2085 (1971)ADSCrossRefGoogle Scholar
  20. Vassallo, C.: Optical Waveguide Concepts. Elsevier, Amsterdam (1991)Google Scholar
  21. Vassallo, C.: 1993–1995 optical mode solvers. Opt. Quantum Electron. 29, 95–114 (1997)CrossRefGoogle Scholar
  22. Zernike, F.: Luneburg lens for optical waveguide use. Opt. Commun. 12(4), 379–381 (1974)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fehmi Çivitci
    • 1
  • Manfred Hammer
    • 1
  • Hugo J. W. M. Hoekstra
    • 1
  1. 1.MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations