Optical and Quantum Electronics

, Volume 46, Issue 4, pp 613–621 | Cite as

Spontaneous generation of entangled exciton in quantum dot systems



We calculate the time evolution of single-exciton states prepared for ensembles of two to four quantum dots. Each dot is considered a two-level system, but with slightly different excitation energies and dipole moments. The dots interact via a tunnel coupling which induces excitation transfer between single emitters, but conserves the total occupation of the system. We show that the initial exciton may evolve towards a steady state where the energy is partially trapped due to the formation of the subradiant (dark) states of the system. In the steady state the individual populations of each dot have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.


Superradiance Quantum dots Radiative decoherence 



This work was funded by the Icelandic Research Fund (Rannis) and by a Polish NCN grant No. DEC-2011/01/B/ST3/02415. A. S. acknowledges support within a scholarship for outstanding young scientists granted by the Polish MNiSW. We are thankful to Paweł Machnikowski for fruitful discussions.


  1. Agarwal, G.S.: Quantum statistical theories of spontaneous emission and their relation to other approaches. In: Hhler, G. (ed.) Springer Tracts in Modern Physics, vol. 70. Springer, BerlinGoogle Scholar
  2. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)Google Scholar
  3. Biolatti, E., Iotti, R.C., Zanardi, P., Rossi, F.: Quantum information processing with semiconductor macroatoms. Phys. Rev. Lett. 85, 5647–5650 (2000)Google Scholar
  4. Busl, M., Sánchez, R., Platero, G.: Control of spin blockade by ac magnetic fields in triple quantum dots. Phys. Rev. B 81, 121306(R) (2010)ADSCrossRefGoogle Scholar
  5. Chen, Y.N., Li, C.M., Chuu, D.S., Brandes, T.: Proposal for teleportation of charge qubits via superradiance. New J. Phys. 7, 172 (2005)CrossRefGoogle Scholar
  6. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)Google Scholar
  7. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)Google Scholar
  8. Gerardot, B.D., Strauf, S., de Dood, M.J.A., Bychkov, A.M., Badolato, A., Hennessy, K., Hu, E.L., Bouwmeester, D., Petroff, P.M.: Photon statistics from coupled quantum dots. Phys. Rev. Lett. 95, 137403 (2005)Google Scholar
  9. Grodecka, A., Machnikowski, P.: Partly noiseless encoding of quantum information in quantum dot arrays against phonon-induced pure dephasing. Phys. Rev. B 73, 125306 (2006)ADSCrossRefGoogle Scholar
  10. Gross, M., Haroche, S.: Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982)Google Scholar
  11. Kestner, J.P., Das Sarma, S.: Proposed spin qubit CNOT gate robust against noisy coupling. Phys. Rev. A 84, 012315 (2011)ADSCrossRefGoogle Scholar
  12. Li, L., Qiu, D.: The states of w-class as shared resources for perfect teleportation and superdense coding. J. Phys. A: Math. Theor. 40, 10871 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. Mokhlespour, S., Haverkort, J.E.M., Slepyan, G., Maksimenko, S., Hoffmann, A.: Collective spontaneous emission in coupled quantum dots : physical mechanism of quantum nanoantenna. Phys. Rev. B 86, 245322 (2012)ADSCrossRefGoogle Scholar
  14. Nussenzweig, H.M.: Introduction to Quantum Optics. Gordon and Breach, Nowy Jork (1973)Google Scholar
  15. Pavolini, D., Crubellier, A., Pillet, P., Cabaret, L., Liberman, S.: Experimental evidence for subradiance. Phys. Rev. Lett. 54, 1917–1920 (1985)Google Scholar
  16. Pazy, E., D’Amico, I., Zanardi, P., Rossi, F.: Storage qubits and their potential implementation through a semiconductor double quantum dot. Phys. Rev. B 64, 195320 (2001)ADSCrossRefGoogle Scholar
  17. Scheibner, M., Schmidt, T., Worschech, L., Forchel, A., Bacher, G., Passow, T., Hommel, D.: Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007)Google Scholar
  18. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  19. Sitek, A., Machnikowski, P.: Collective fluorescence and decoherence of a few nearly identical quantum dots. Phys. Rev. B 75, 035328 (2007)ADSCrossRefGoogle Scholar
  20. Sitek, A., Machnikowski, P.: Theory of nonlinear optical response of ensembles of double quantum dots. Phys. Rev. B 80, 115301 (2009)ADSCrossRefGoogle Scholar
  21. Sitek, A., Machnikowski, P.: Interplay of coupling and superradiant emission in the optical response of a double quantum dot. Phys. Rev. B 80, 115319 (2009)ADSCrossRefGoogle Scholar
  22. Sitek, A., Machnikowski, Paweł: Vacuum-induced coherence in quantum dot systems. Phys. Rev. 86, 205315 (2012)ADSCrossRefGoogle Scholar
  23. Situ, H., Qiu, D.: Simultaneous dense coding. J. Phys. A: Math. Theor. 43, 055301 (2010)ADSCrossRefMathSciNetGoogle Scholar
  24. Skribanowitz, N., Herman, I.P., MacGilvray, J.C., Feld, M.S.: Observation of Dicke superradiance in optically Pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973)Google Scholar
  25. Szafran, B.: Coupled quantum dots—spatial correlations between interacting carriers. Acta Phys. Polon. A 114, 1013–1039 (2008)Google Scholar
  26. Szafran, B., Chwiej, T., Peeters, F.M., Bednarek, S., Adamowski, J., Partoens, B.: Exciton and negative trion dissociation by an external electric field in vertically coupled quantum dots. Phys. Rev. B 71, 205316 (2005)ADSCrossRefGoogle Scholar
  27. Trocha, P., Barnaś, Józef: Kondo-Dicke resonances in electronic transport through triple quantum dots. Phys. Rev. B 78, 075424 (2008)Google Scholar
  28. Unold, T., Mueller, K., Lienau, C., Elsaesser, T., Wieck, A.D.: Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction. Phys. Rev. Lett. 94, 137404 (2005)ADSCrossRefGoogle Scholar
  29. Vernek, E., Orellana, P.A., Ulloa, S.E.: Suppression of Kondo screening by the Dicke effect in multiple quantum dots. Phys. Rev. B 82, 165304 (2010)Google Scholar
  30. Wang, Q., Xie, H., Nie, Y.-H., Ren, W.: Enhancement of thermoelectric efficiency in triple quantum dots by the Dicke effect. Phys. Rev. B 87, 075102 (2013)ADSCrossRefGoogle Scholar
  31. Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of PhysicsWrocław University of TechnologyWrocławPoland
  2. 2.School of Science and EngineeringReykjavik UniversityReykjavikIceland

Personalised recommendations