Optical and Quantum Electronics

, Volume 45, Issue 7, pp 699–706 | Cite as

Physical modeling of an optical memory cell based on quantum dot-in-well hybrid structure

Article

Abstract

In this paper we present a physical modeling and simulation result of an optical memory cell based on a semiconductor quantum-dot in quantum-well hybrid structure. The physical modeling and simulation were done in Crosslight Apsys software which offers advanced models for photoelectric devices. We have optimized the scan conditions, iterative algorithm and other simulation parameters in order to obtain a solution. The calculated I–V and C–V curves agree with the experimental results and demonstrate that the cell can be used for photon storage.

Keywords

Photon storage Quantum-dots Quantum-well APSYS Physical model 

References

  1. APSYS User’s Manual. http://www.crosslight.com (2011)
  2. Bian, S.B., Tang, Y., Li, G.R., Zheng, H.Z., et al.: Photon-storage in optical memory cells based on a semiconductor quantum dot-quantum well hybrid structure. Chin. Phys. Lett. 20(8), 1362–1365 (2003)ADSCrossRefGoogle Scholar
  3. Fu, Y., Lu, W., Shen, S.C., et al.: Infrared radiation transmission through GaAs/AlGaAs quantum well infrared photodetector. Superlattices Microstruct. 29, 309–318 (2001)ADSCrossRefGoogle Scholar
  4. Hu, B., Zhou, X., Zheng, H.Z., et al.: Photocurrent response in a double barrier structure with quantum dots–quantum well inserted in central well. Physica E 33, 355–358 (2006)ADSCrossRefGoogle Scholar
  5. Ko, D.Y.K., Inkson, J.C.: Microscopic calculation of electric field effects in \(\text{ GaAs/Al}_{{\rm x}}\text{ Ga}_{1-{\rm x}}\text{ As/GaAs}\) tunnel structures. Phys. Rev. B. 38(17), 12416–12420 (1988)ADSCrossRefGoogle Scholar
  6. Landheer, D., Liu, H.C., Buchanan, M., Stoner, R.: Tunneling through AlAs barriers: \(\Gamma \)\(X\) transfer current. Appl. Phys. Lett. 54, 1784–1786 (1989)ADSCrossRefGoogle Scholar
  7. Li, N., Fu, Y., Lu, W., Shen, S.C., et al.: Fine structures of photoresponse spectra in quantum well infrared photodetector. Appl. Phys. Lett. 75, 2238–2240 (1999)ADSCrossRefGoogle Scholar
  8. Liu, H.C.: Resonant tunneling through single layer heterostructures. Appl. Phys. Lett. 51, 1019–1021 (1987)ADSCrossRefGoogle Scholar
  9. Lu, W., Mu, Y.M., Chen, X.S., Shen, S.C., et al.: Direct observation of above-quantum step quasibound states in \(\text{ GaAs/Al}_{{\rm x}}\text{ Ga}_{1-{\rm x}}\text{ As}/\) vacuum heterostructures. Phys. Rev. B 57, 9787–9791 (1998)ADSCrossRefGoogle Scholar
  10. Lundstrom, T., Schoenfeld, W., Lee, H., et al.: Exciton storage in semiconductor self-assembled quantum dots. Science 286, 2312–2314 (1999)CrossRefGoogle Scholar
  11. Peng, J., Hu, B., Zheng, H.Z., et al.: Storage of photoexcited electron-hole pairs in an AlAs/GaAs heterostructure created by electron transfer in real and k spaces. Chin. Phys. Lett. 19(10), 1540–1542 (2002)ADSCrossRefGoogle Scholar
  12. Piprek, J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Elsevier, Amsterdam (2003)Google Scholar
  13. Rocke, C., Zimmermann, S., Wixforth, A., et al.: Acoustically driven storage of light in a quantum well. Phys. Rev. Lett. 78, 4099–4102 (1997)ADSCrossRefGoogle Scholar
  14. Romero, B., Arias, J., Esquivias, I., Cada, M.: Simple model for calculating the ratio of the carrier capture and escape times in quantum-well lasers. Appl. Phys. Lett. 76, 1504–1506 (2000)ADSCrossRefGoogle Scholar
  15. Schoenfeld, W.V., Lundstrom, T., Petrof, P.M., et al.: Charge separation in coupled InAs quantum dots and strain-induced quantum dots. Appl. Phys. Lett. 74, 2194–2196 (1999)ADSCrossRefGoogle Scholar
  16. Tao, S.Q., Jiang, Z.Q., Yuan, Q., Liu, G.Q., Xu, M.: Multi-track storage of 10000 holograms in a disk-type photorefractive crystal. Chin. Phys. Lett. 17(9), 675–677 (2000)ADSCrossRefGoogle Scholar
  17. Xia, C.S., Hu, W.D., Chen, X.S., Lu, W., et al.: Simulation of InGaN/GaN multiple quantum well light-emitting diodes with quantum dot model for electrical and optical effects. Opt. Quant. Electron. 38(12), 1077–1089 (2006)Google Scholar
  18. Zimmermann, S., Wixforth, A., Kotthaus, J.P., et al.: A Semiconductor-based photonic memory cell. Science 283, 1292–1295 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratory of Polar Materials and Devices, School of Information Science and TechnologyEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations