Advertisement

Optical and Quantum Electronics

, Volume 45, Issue 7, pp 665–672 | Cite as

Crosstalk suppressing design of GaAs microlenses integrated on HgCdTe infrared focal plane array

  • Yang Li
  • Zhen-Hua Ye
  • Chun Lin
  • Xiao-Ning Hu
  • Rui-Jun Ding
  • Li He
Article

Abstract

In this study, crosstalk suppressing design of dielectric GaAs microlenses integrated on a traditional HgCdTe infrared focal plane array is presented, by exploiting the finite difference time domain technique. Responsive photocurrent of the objective pixel and crosstalk between adjacent detectors have been numerically simulated, using commercial TCAD software Apsys, for a mid-wavelength planar array with a pitch of 20\(\upmu \)m. By properly adjusting both the microlens radius and the absorber thickness, crosstalk can be notably suppressed to less than 1 % while the photoresponse is maintained or even enhanced.

Keywords

Microlens IRFPA Crosstalk suppressing FDTD method 

Notes

Acknowledgments

We thank C. S. Xia, Y. Sheng and M. Yang from Crosslight Software Inc., Shanghai Office for technical assistance and helpful discussions. We also acknowledge the support provided by the National Natural Science Foundation of China (Grant No. 6070612).

References

  1. Chen, Y.G., Hu, W.D., Chen, X.S., Wang, J., Wang, X.F., Yu, C.H., Lu, W.: Temperature dependence on photosensitive area extension in HgCdTe photodiodes using laser beam induced current. Opt. Eng. 51, 036401 (2012)ADSCrossRefGoogle Scholar
  2. Dhar, V., Bhan, R.K., Ashokan, R.: Effect of built-in electric field on crosstalk in focal plane arrays using HgCdTe epilayers. Infrared Phys. Technol. 39, 353–367 (1998)ADSCrossRefGoogle Scholar
  3. Guo, N., Hu, W.D., Chen, X.S., Meng, C., Lv, Y.Q., Lu, W.: Optimization of microlenses for InSb infrared focal-plane arrays. J. Electron. Mater. 40, 1647–1650 (2011)ADSCrossRefGoogle Scholar
  4. Guo, N., Hu, W.D., Chen, X.S., Lei, W., Lv, Y.Q., Zhang, X.L., Si, J.J., Lu, W.: Optimization for mid-wavelength InSb infrared focal plane arrays under front-side illumination. Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9630-8
  5. Hougen, C.A.: Model for infrared absorption and transmission of liquid-phase epitaxy HgCdTe. J. Appl. Phys. 66, 3763–3766 (1989)ADSCrossRefGoogle Scholar
  6. Hu, W.D., Chen, X.S., Yin, F., Quan, Z.J., Ye, Z.H., Hu, X.N., Li, Z.F., Lu, W.: Analysis of temperature dependence of dark current mechanisms for long-wavelength HgCdTe photovoltaic infrared detectors. J. Appl. Phys. 105, 104502 (2009)ADSCrossRefGoogle Scholar
  7. Hu, W.D., Chen, X.S., Ye, Z.H., Lu, W.: A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification. Appl. Phys. Lett. 99, 091101 (2011)ADSCrossRefGoogle Scholar
  8. Hu, W.D., Chen, X.S., Ye, Z.H., Chen, Y.G., Yin, F., Zhang, B., Lu, W.: Polarity inversion and coupling of laser beam induced current in As-doped long-wavelength HgCdTe infrared detector pixel arrays: Experiment and simulation. Appl. Phys. Lett. 101, 181108 (2012)ADSCrossRefGoogle Scholar
  9. Huang, J., Zhou, W.H., Yin, W.T.: Fabrication and evaluation of the CdZnTe microlens arrays. In: Proceedings of the SPIE, vol. 7658, p. 76584G (2010)Google Scholar
  10. Keasler, C.A., Bellotti, E.: Three-dimensional electromagnetic and electrical simulation of HgCdTe pixel arrays. J. Electron. Mater. 40, 1795–1801 (2011)ADSCrossRefGoogle Scholar
  11. Kozlowski, L.J., Vural, K., Luo, J., Tomasini, A., Liu, T., Kleinhans, W.E.: Low-noise infrared and visible focal plane arrays. Opto-Electron. Rev. 7, 259–269 (1999)Google Scholar
  12. Li, Y., Ye, Z.H., Lin, C., Hu, X.N., Ding, R.J., He, L.: Parameter determination from current-voltage characteristics of HgCdTe photodiodes in forward bias region. Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9642-4
  13. Musca, C.A., Dell, J.M., Faraone, L., Bajaj, J., Pepper, T., Spariosu, K., Blackwell, J., Bruce, C.: Analysis of crosstalk in HgCdTe p-on-n heterojunction photovoltaic infrared sensing arrays. J. Electron. Mater. 28, 617–623 (1999)ADSCrossRefGoogle Scholar
  14. Peake, G.M., Sun, S.Z., Hersee, S.D.: GaAs microlens arrays grown by shadow masked MOVPE. J. Electron. Mater. 26, 1134–1138 (1997)ADSCrossRefGoogle Scholar
  15. Piotrowski, J., Mucha, H., Orman, Z., Pawluczyk, J., Ratajczak, J., Kaniewski, J.: Refractive GaAs microlenses monolithically integrated with InGaAs and HgCdTe photodetectors. In: Proceedings of the SPIE, vol. 5074, pp. 918–925 (2003)Google Scholar
  16. Rogalski, A.: Infrared detectors: status and trends. Prog. Quantum Electron. 27, 59–210 (2003)ADSCrossRefGoogle Scholar
  17. Rogalski, A.: HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267–2336 (2005)ADSCrossRefGoogle Scholar
  18. Wang, J., Chen, X.S., Hu, W.D., Wang, L., Lu, W., Xu, F.Q., Zhao, J., Shi, Y.L., Ji, R.B.: Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200 K. Appl. Phys. Lett. 99, 113508 (2011)ADSCrossRefGoogle Scholar
  19. Ye, Z.H., Hu, W.D., Yin, W.T., Huang, J., Lin, C., Hu, X.N., Ding, R.J., Chen, X.S., Lu, W., He, L.: Low-roughness plasma etching of HgCdTe Masked with patterned silicon dioxide. J. Electron. Mater. 40, 1642–1646 (2011)ADSCrossRefGoogle Scholar
  20. Yin, F., Hu, W.D., Zhang, B., Li, Z.F., Hu, X.N., Chen, X.S., Lu, W.: Simulation of laser beam induced current for HgCdTe photodiodes with leakage current. Opt. Quantum Electron. 41, 805–810 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yang Li
    • 1
    • 2
  • Zhen-Hua Ye
    • 1
  • Chun Lin
    • 1
  • Xiao-Ning Hu
    • 1
  • Rui-Jun Ding
    • 1
  • Li He
    • 1
  1. 1.Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations