Optical and Quantum Electronics

, Volume 45, Issue 7, pp 581–588 | Cite as

Self-consistent analysis of thermal far-field blooming of broad-area laser diodes

  • Joachim Piprek


High-power broad-area laser diodes often suffer from a widening of the lateral (slow axis) far-field with increasing current, called thermal blooming, which is mainly caused by the non-uniform self-heating of the laser and has been studied for several decades. This paper presents the first self-consistent electro-thermal-optical simulation and analysis of such thermal blooming. Using a real InGaAs/GaAs broad-area laser as an example, a 900A/cm2 higher current density is shown to lead to only 0.5K stronger lateral temperature drop inside the ridge waveguide but to a one degree wider slow axis far field. Small non-thermal blooming is also observed.


High-power broad-area laser diode Thermal blooming Slow axis far field Self-heating Thermal lens Lateral laser modes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carroll J., Whiteaway J., Plump D.: Distributed Feedback Semiconductor Lasers. SPIE Press, Bellingham (1998)CrossRefGoogle Scholar
  2. Chin, A.K., Knapczyk, M.T., Jacob, J.H., Eppich, H., Lang, K.D., Chin, R.H.,Dogan, M.: Record CW-brightness from a single, 20% fill-factor, 1-cm laser-diode bar at 20°C. SPIE Proc. 7918, 79180L (2011)Google Scholar
  3. Crosslight Software, Inc., see (2012)
  4. Crump, P., Schultz, C.M., Pietrzak, A., Knigge, S., Brox, O., Maaßdorf, A.,Bugge, F., Wenzel, H., Erbert, G.: 975-nm high-power broad area diode lasers optimized for narrow spectral linewidth applications. SPIE Proc. 7583, 75830N (2010)Google Scholar
  5. Crump P., Boeldicke S., Schultz C.M., Ekhteraei H., Wenzel H., Erbert G.: Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers. Sem. Sci. Technol. 27, 045001 (2012)ADSCrossRefGoogle Scholar
  6. Crump, P.: Ferdinand Braun Institute Berlin, Germany. Personal Communication (2012)Google Scholar
  7. Gehrsitz S., Reinhart F.K., Gourgon C., Herres N., Vonlanthen A., Sigga H.: The refractive index of AlxGa1ÀxAs below the band gap: Accurate determination and empirical modeling. J. Appl. Phys. 87, 7825–7837 (2000)ADSCrossRefGoogle Scholar
  8. Hadley G.R., Hohimer J.P., Owyoung A.: Comprehensive modeling of diode arrays and broad-area devices with applications to lateral index tailoring. IEEE J. Quant. Electr. 24, 2138–2152 (1988)ADSCrossRefGoogle Scholar
  9. Hess O., Koch S.W., Moloney J.: Filamentation and beam propagation in broad-area semiconductor lasers. IEEE J. Quant. Electr. 31, 35–43 (1995)ADSCrossRefGoogle Scholar
  10. Kressel H., Butler J.K.: Semiconductor Lasers and Heterojunction LEDs. Academic Press, New York (1977)Google Scholar
  11. Lang R.L., Larsson A.G., Cody J.G.: Lateral modes of broad area semiconductor lasers: theory and experiment. IEEE J. Quant. Electr. 27, 312–320 (1991)ADSCrossRefGoogle Scholar
  12. Mukherjee J., McInerney J.G.: Electrothermal analysis of CW high-power broad-area laser diodes: a comparison between 2-D and 3-D modeling. IEEE J. Sel. Top. Quant. Electr. 13, 1180–1187 (2007)CrossRefGoogle Scholar
  13. Nakwaski W.: Thermal conductivity of binary, ternary, and quaternary III-V compounds. J. Appl. Phys. 64, 159 (1988)ADSCrossRefGoogle Scholar
  14. Piprek J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic Press, San Diego (2003)Google Scholar
  15. Piprek, J.: Self-consistent electro-thermal-optical simulation of thermal blooming in broad-area lasers. 12th NUSOD Conf., Proc. pp. 119–120 (2012)Google Scholar
  16. Pomplun, J., Wenzel, H., Burger, S., Zschiedricha, L., Rozova, M., Schmidt, F., Crump, P., Ekhteraei, H., Schultz, C.M., Erbert, G.: Thermo-optical simulation of high-power diode lasers. Proc. SPIE 8255 (2012)Google Scholar
  17. Rideout W., Yu B., LaCourse J., York P.K., Beernink K.J., Coleman J.J.: Measurement of the carrier dependence of differential gain, refractive index, and linewidth enhancement factor in strained-layer quantum well lasers. Appl. Phys. Lett. 56, 706–708 (1990)ADSCrossRefGoogle Scholar
  18. Schultz C.M., Crump P., Wenzel H., Brox O., Maaßdorf A., Erbert G., Traenkle G.: 11W broad area 976 nm DFB lasers with 58% power conversion efficiency. Electron. Lett. 46, 580 (2010)CrossRefGoogle Scholar
  19. Wachutka G.K.: Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput. Aided Des. 9, 1141–1149 (1990)CrossRefGoogle Scholar
  20. Wenzel, H., Crump, P., Ekhteraei, H., Schultz, C., Pomplun, J., Burger, S., Zschiedrich, L., Schmidt, F., Erbert, G.: Theoretical and experimental analysis of the lateral modes of high-power broad-area lasers. 11th NUSOD Conf., Presentation WA2 (2011)Google Scholar
  21. Wenzel, H.: Ferdinand Braun Institute Berlin, Germany. Personal Communication (2012)Google Scholar
  22. Witzigmann, B.: University of Kassel, Germany. Personal Communication (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.NUSOD Institute LLCNewarkUSA

Personalised recommendations