Optical and Quantum Electronics

, Volume 45, Issue 5, pp 381–387 | Cite as

Numerical study of the advantages of ultraviolet light-emitting diodes with a single step quantum well as the electron blocking layer

  • W. Tian
  • Z. H. Feng
  • B. Liu
  • H. Xiong
  • J. B. Zhang
  • J. N. Dai
  • S. J. Cai
  • C. Q. Chen
Article

Abstract

The advantages of ultraviolet light-emitting diodes with a single step quantum well used as electron blocking layer (EBL) are studied numerically. The energy band diagrams, hole concentrations, electrostatic field near the EBL, current–voltage curve and internal quantum efficiency (IQE) are investigated by using the Crosslight simulation programs. The simulation results show that the structure with a single step quantum well has better performance over the conventional one, which can be attributed to the mitigated band bending near the EBL due to the change of electrostatic field by using a step well. Therefore, the efficiency of hole injection is improved, with which both the IQE and the total lighting power are increased.

Keywords

Step quantum well Ultraviolet light-emitting diodes (UV-LEDs) Band bending Polarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang J.Y., Kuo Y.K.: Electronic current overflow and inhomogeneous hole distribution of the InGaN quantum well structures. Proc. SPIE 4913, 115–125 (2002)ADSCrossRefGoogle Scholar
  2. Chichibu S.F., Abare A.C., Minsky M.S., Keller S., Fleischer S.B., Bowers J.E. et al.: Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Appl. Phys. Lett. 73, 2006–2008 (1998)ADSCrossRefGoogle Scholar
  3. Fiorentini V., Bernardini F., Ambacher O.: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 80, 1204–1206 (2001)ADSCrossRefGoogle Scholar
  4. Hirayama H., Tsukada Y., Maeda T., Kamata N.: Marked enhancement in the efficiency of deep-ultraviolet alGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3, 0310021–0310023 (2010)Google Scholar
  5. Hwang S., Morgan D., Kesler A., Lachab M., Zhang B., Heidari A., Nazir H., Ahmad I., Dion J., Fareed Q., Adivarahan V., Islam M., Khan A.: 276 nm substrate-free flip-chip AlGaN light-emitting diodes. Appl. Phys. Express 4, 032102-1–032102-3 (2011)ADSGoogle Scholar
  6. Kuo Y.K., Chang J.Y., Tsai M.C.: Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer. Opt. Lett. 35, 3285–3287 (2010)ADSCrossRefGoogle Scholar
  7. Li J., Lin J.Y., Jiang H.X.: Growth of III-nitride photonic structures on large area silicon substrates. Appl. Phys. Lett. 88, 171909-1–171909-3 (2006)ADSGoogle Scholar
  8. Liou B.T., Tsai M.C., Liao C.T., Yen S.H., Kuo Y.K.: Numerical investigation of blue InGaN light-emitting diodes with staggered quantum wells. Proc. SPIE 7211, 72111D-1–72111D-8 (2009)Google Scholar
  9. Pernot C., Kim M., Fukahori S., Inazu F., Fujita T., Nagasawa Y., Hirano A., Ippommatsu M., Iwaya M., Kamiyama S., Akasaki I., Amano H.: Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes. Appl. Phys. Express 3, 061004-1–061004-3 (2010)ADSCrossRefGoogle Scholar
  10. Shur, M.S., Gaska, R.: Deep-ultraviolet light-emitting diodes. Trans. Electron. Dev. IEEE 57(1), 12 (2010)Google Scholar
  11. Tsuzuki H., Mori F., Takeda K., Iwaya M., Kamiyama S., Amano H., Akasaki I., Yoshida H., Kuwabara M., Yamashita Y., Kan H.: Novel UV devices on high-quality AlGaN using grooved underlying layer. J. Cryst. Growth 311, 2860–2863 (2009)ADSCrossRefGoogle Scholar
  12. Vurgaftman I., Meyer J.R., Ram-Mohan L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)ADSCrossRefGoogle Scholar
  13. Yen S.H., Kuo Y.K.: Polarization-dependent optical characteristics of violet InGaN laser diodes. J. Appl. Phys. 103, 103115-1–103115-6 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • W. Tian
    • 1
    • 2
  • Z. H. Feng
    • 1
  • B. Liu
    • 1
  • H. Xiong
    • 2
  • J. B. Zhang
    • 2
  • J. N. Dai
    • 1
    • 2
  • S. J. Cai
    • 1
  • C. Q. Chen
    • 1
    • 2
  1. 1.Science and Technology on ASIC LaboratoryHebei Semiconductor Research InstituteShijiazhuangChina
  2. 2.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations