Optical and Quantum Electronics

, Volume 45, Issue 4, pp 343–348 | Cite as

Efficient broadband simulations for thin optical structures

  • Xuesong MengEmail author
  • Phillip Sewell
  • Ana Vukovic
  • Harshana G. Dantanarayana
  • Trevor M. Benson


The thickness of the layers comprising optical structures is usually very thin. When modelling such thin features using a traditional numerical method, for instance the transmission-line modelling (TLM) method, a very small space step is often used to properly discretize the material geometry. This consequently results in large memory storage and longer run time. In this paper a new technique embedding thin structures between TLM nodes is investigated. The key features of this technique are the acquisition of the formulations in the frequency domain and the utilisation of digital filter theory and an inverse Z transform to change the formulations to the time domain. This technique has been successfully applied to calculate the reflection and transmission coefficients of optical structures incorporating thin layers, including antireflection coatings and fibre Bragg grating structures.


Antireflection coatings Digital filter theory Fibre Bragg grating Transmission line modelling method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn. U.S. Government printing office, Washington, D.C. (1972)zbMATHGoogle Scholar
  2. Benson F.A., Benson T.M.: Fields Waves and Transmission Lines. Chapman & Hall, London (1991)CrossRefGoogle Scholar
  3. Christopoulos C.: The Transmission-Line Modelling Method TLM. IEEE Press, New York (1995)CrossRefGoogle Scholar
  4. Giles C.R.: Lightwave applications of fibre Bragg gratings. J. Lightwave Technol. 15(8), 1391–1404 (1997)ADSCrossRefGoogle Scholar
  5. Janyani V., Paul J.D., Vukovic A., Benson T.M., Sewell P.: TLM modelling of non-linear optical effects in fibre Bragg gratings. IEE Proc. Optoelectron. 151(4), 185–192 (2004)CrossRefGoogle Scholar
  6. Janyani, V.: Modelling of dispersive and nonlinear materials for optoelectronics using TLM. Ph.D. thesis, University of Nottingham (2005)Google Scholar
  7. Litchinitser N.M., Eggleton B.J., Patterson D.B.: Fibre Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression. J. Lightwave Technol. 15(8), 1301–1313 (1997)ADSGoogle Scholar
  8. Panitz M., Paul J., Christopoulos C.: A fractional boundary placement model using the transmission-line modelling (TLM) method. IEEE Trans. Microw. Theory Tech. 57(3), 637–646 (2009)ADSCrossRefGoogle Scholar
  9. Paul, J.: The modelling of general electromagnetic materials in TLM. Ph.D. thesis, University Of Nottingham (1998)Google Scholar
  10. Paul J., Christopoulos C., Thomas D.W.P.: Generalized materials models in TLM—part I: materials with frequency-dependent properties. IEEE Trans. Antennas Propag. 47(10), 1528–1534 (1999a)ADSCrossRefGoogle Scholar
  11. Paul J., Christopoulos C., Thomas D.W.P.: Generalized materials models in TLM—part II: materials with anisotropic properties. IEEE Trans. Antennas Propag. 47(10), 1535–1542 (1999b)ADSCrossRefGoogle Scholar
  12. Paul J., Christopoulos C., Thomas D.W.P.: Generalized materials models in TLM—part III: materials with nonlinear properties. IEEE Trans. Antennas Propag. 50(7), 997–1004 (2002)ADSCrossRefGoogle Scholar
  13. Pozar D.M.: Microwave Engineering. Wiley, USA (2005)Google Scholar
  14. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in C++: the Art of Scientific Computing, 2nd edn. Cambridge University Press, UK (2002)Google Scholar
  15. Reed, M.: The free space radiation mode method in integrated optics. Ph.D. thesis, University of Nottingham (1998)Google Scholar
  16. Smith III, J.: Introduction to digital filters with audio applications. (2007)
  17. Tamir T.: Integrated Optics, 2nd edn. Springer, Berlin (1979)Google Scholar
  18. Vukovic, A.: Fourier transformation analysis of optoelectronic components and circuits. Ph.D. thesis, University of Nottingham (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Xuesong Meng
    • 1
    Email author
  • Phillip Sewell
    • 1
  • Ana Vukovic
    • 1
  • Harshana G. Dantanarayana
    • 1
  • Trevor M. Benson
    • 1
  1. 1.Faculty of Engineering, George Green Institute for Electromagnetics ResearchUniversity of NottinghamNottinghamUK

Personalised recommendations