Optical and Quantum Electronics

, Volume 45, Issue 4, pp 309–316 | Cite as

Modeling reflections induced by waveguide transitions

  • Daniele Melati
  • Francesco Morichetti
  • Andrea Melloni
Article

Abstract

Reflections generated along optical waveguides may result in detrimental effects and deterioration of the circuit performances. In this work we propose a fast and accurate circuit model to predict the reflection induced by a waveguide discontinuity. The model is based on a variational approach of the Fresnel expression of the reflectivity. After theoretical description, the model is applied to two different interfaces: a waveguide transition inducing very low reflections and a reflective chip facet. A comparison with experimental results and electromagnetic simulations is shown, demonstrating the accuracy of the proposed method.

Keywords

Photonics Integration Numerical Method Reflection Waveguides Discontinuities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brosson P., Delansay P.: Modeling of the static and dynamic responses of an integrated laser Mach–Zehnder modulator and comparison with an integrated laser EA modulator. J. Lightwave Technol. 16(12), 2407–2418 (1998)ADSCrossRefGoogle Scholar
  2. Cardona M.: Optical studies of the band structure of InP. J. Appl. Phys. 32(5), 958 (1961)ADSCrossRefGoogle Scholar
  3. Čtyroký J.: Photonic bandgap structures in planar waveguides. J. Opt. Soc. Am. A 18(2), 435–441 (1999)CrossRefGoogle Scholar
  4. Ferrari C., Morichetti F., Melloni M.: Disorder in coupled-resonator optical waveguides. J. Opt. Soc. Am. B 26(4), 858–866 (2009)ADSCrossRefGoogle Scholar
  5. Gallagher, D.F.G., Felici, T.P.: Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons. In: Integrated Optics: Devices, Materials, and Technologies VII (2003)Google Scholar
  6. Glombitza U., Brinkmeyer E.: Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides. J. Lightwave Technol. 11(8), 1377–1384 (1993)ADSCrossRefGoogle Scholar
  7. Herben, C.G.P.: Compact integrated cross connects for wavelength-division multiplexing networks. Ph.D. dissertation, Delft University of Technology, Delft, The Netherlands (2000)Google Scholar
  8. Li X., Huang W.P., Adams D.M., Rolland C., Makino T.: Modeling and design of a DFB laser integrated with a Mach–Zehnder modulator. IEEE J. Quantum Electron. 34(10), 1807–1815 (1998)ADSCrossRefGoogle Scholar
  9. Morichetti F., Canciamilla A., Ferrari C., Torregiani M., Melloni A., Martinelli M.: Roughness induced backscattering in optical silicon waveguides. Phys. Rev. Lett. 104(3), 33902-1 (2010a)ADSCrossRefGoogle Scholar
  10. Morichetti F., Canciamilla A., Martinelli M., Samarelli A., DeLa Rue R.M., Sorel M., Melloni A.: Coherent backscattering in optical microring resonators. Appl. Phys. Lett. 96(8), 33902-4 (2010b)CrossRefGoogle Scholar
  11. Poulton C.G., Koos C., Fujii M., Pfrang A., Schimmel T., Leuthold J., Freude W.: Radiation modes and roughness loss in high index-contrast waveguides. J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006)CrossRefGoogle Scholar
  12. Pozar D.M.: Microwave Engineering, edn. 2. Wiley, London (1998)Google Scholar
  13. Sakai S., Umeno M., Aoki T., Tobe M., Amemiya Y.: InGaAsP/InP photodiodes antireflectively coated with InP native oxide. IEEE J. Quantum Electron. 15(10), 1077–1078 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Daniele Melati
    • 1
  • Francesco Morichetti
    • 1
  • Andrea Melloni
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanItaly

Personalised recommendations