Optical and Quantum Electronics

, Volume 44, Issue 12–13, pp 605–611 | Cite as

Semiconductor nanomembranes for integrated silicon photonics and flexible Photonics

  • Weidong Zhou
  • Zhenqiang Ma
  • Santhad Chuwongin
  • Yi-Chen Shuai
  • Jung-Hun Seo
  • Deyin Zhao
  • Hongjun Yang
  • Weiquan Yang
Invited Paper

Abstract

Crystalline semiconductor nanomembranes (NMs), which are transferable, stackable, bondable and manufacturable, offer unprecedented opportunities for unique and novel device applications. We review here nanophotonic devices based on stacked semiconductor NMs on Si, glass and flexible PET substrates. Photonic crystal Fano resonance-based surface-normal optical filters and broadband reflectors have been demonstrated with unique angle and polarization properties. Flexible photodetectors and solar cells have also been developed based on the NM stacking processes. Such NM stacking process can lead to a paradigm shift on silicon photonic integration and hybrid organic/inorganic flexible photonics.

Keywords

Photonic integration Photonic crystals Semiconductor nanomembranes Flexible photonics Silicon photonics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowers J.E., Park H., Fang A.W., Cohen O., Jones R., Paniccia M.: Design and fabrication of optically pumped hybrid silicon-AlGaInAs evanescent lasers. IEEE J. Sel. Top. Quant. Electron. 12(2), 1657–1663 (2006)Google Scholar
  2. Kim D., Ahn J., Choi W., Kim H., Kim T., Song J., Huang Y., Liu Z., Lu C., Rogers J.: Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008a)ADSCrossRefGoogle Scholar
  3. Kim D., Song J., Choi W., Kim H., Kim R., Liu Z., Huang Y., Hwang K., Zhang Y., Rogers J.: Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 105(48), 18675–18680 (2008b)ADSCrossRefGoogle Scholar
  4. Mack S., Meitl M.A., Baca A.J., Zhu Z.T., Rogers J.A.: Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 88, 213101 (2006)ADSCrossRefGoogle Scholar
  5. Meitl M.A., Zhu Z.T., Kumar V., Lee K.J., Feng X., Huang Y.Y., Adesida I., Nuzzo R.G., Rogers J.A.: Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5(1), 33–38 (2006)ADSCrossRefGoogle Scholar
  6. Park H., Fang A., Kodama S., Bowers J.: Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt. Express 13(23), 9460–9464 (2005)ADSCrossRefGoogle Scholar
  7. Qiang Z., Yang H., Chen L., Pang H., Ma Z., Zhou W.: Fano filters based on transferred silicon nanomembranes on plastic substrates. Appl. Phys. Lett. 93, 061106 (2008)ADSCrossRefGoogle Scholar
  8. Roberts M.M., Klein L.J., Savage D.E., Slinker K.A., Friesen M., Celler G., Eriksson M.A., Lagally M.G.: Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 5(5), 388–393 (2006)ADSCrossRefGoogle Scholar
  9. Rogers J., Bao Z., Baldwin K., Dodabalapur A., Crone B., Raju V., Kuck V., Katz H., Amundson K., Ewing J.: Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. USA 98(9), 4835–4840 (2001)ADSCrossRefGoogle Scholar
  10. Rogers J., Huang Y.: A curvy, stretchy future for electronics. Proc. Natl. Acad. Sci. USA 106(27), 10875–10876 (2009)ADSCrossRefGoogle Scholar
  11. Schmidt O.G., Eberl K.: Nanotechnology: thin solid films roll up into nanotubes. Nature 410(6825), 168 (2001)ADSCrossRefGoogle Scholar
  12. Scott S.A., Lagally M.G.: Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys. J. Phy. D Appl. Phys 40(4), R75–R92 (2007)ADSCrossRefGoogle Scholar
  13. Sun Y., Rogers J.A.: Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897–1916 (2007)CrossRefGoogle Scholar
  14. Yang H., Chuwongin S., Qiang Z., Chen L., Pang H., Ma Z., Zhou W.: Resonance control of membrane reflectors with effective index engineering. Appl. Phys. Lett. 95, 023110 (2009)CrossRefGoogle Scholar
  15. Yang H., Qiang Z., Pang H., Ma Z., Zhou W.D.: Surface-normal fano filters based on transferred silicon nanomembranes on glass substrates. Electron. Lett. 44(14), 858–859 (2008)CrossRefGoogle Scholar
  16. Yang W., Yang H., Qin G., Ma Z., Berggren J., Hammar M., Soref R., Zhou W.: Large-area InP-based crystalline nanomembrane flexible photodetectors. Appl. Phys. Lett. 96(12), 121107 (2010)ADSCrossRefGoogle Scholar
  17. Yuan H.-C., Shin J., Qin G., Sun L., Bhattacharya P., Lagally M.G., Celler G.K., Ma Z.: Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes. Appl. Phys. Lett. 94(1), 013102 (2009)ADSCrossRefGoogle Scholar
  18. Yuan H.C., Celler G.K., Ma Z.: 7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate. J. Appl. Phys. 102, 034501 (2007)ADSCrossRefGoogle Scholar
  19. Yuan H.C., Ma Z.: Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate. Appl. Phys. Lett. 89, 212105 (2006)ADSCrossRefGoogle Scholar
  20. Yuan H.C., Ma Z., Roberts M.M., Savage D.E., Lagally M.G.: High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers. J. Appl. Phys. 100, 013708 (2006)ADSCrossRefGoogle Scholar
  21. Yuan, H.C., Roberts, M.M., Zhang, P., Park, B.N., Klein, L.J., Savage, D.E., Flack, F.S., Ma, Z., Evans, P.G., Eriksson, M.A.: Silicon-based nanomembrane materials: the ultimate in strain engineering. In: Digest of Papers 2005 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 327–333. (2005)Google Scholar
  22. Zhang P., Tevaarwerk E., Park B., Savage D., Celler G., Knezevic I., Evans P., Eriksson M., Lagally M.: Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 439(7077), 703–706 (2006)ADSCrossRefGoogle Scholar
  23. Zhou, W., Ma, Z.: Semiconductor nanomembranes for stacked and flexible photonics (Invited). Paper presented at the Photonics West, San Jose (2010)Google Scholar
  24. Zhou W., Ma Z., Yang H., Qiang Z., Qin G., Pang H., Chen L., Yang W., Chuwongin S., Zhao D.: Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes. J. Phys. D 42(23), 234007–234017 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Weidong Zhou
    • 1
  • Zhenqiang Ma
    • 2
  • Santhad Chuwongin
    • 1
  • Yi-Chen Shuai
    • 1
  • Jung-Hun Seo
    • 2
  • Deyin Zhao
    • 1
  • Hongjun Yang
    • 1
    • 3
  • Weiquan Yang
    • 1
  1. 1.Department of Electrical Engineering, NanoFAB CenterUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Semerane Inc.ArlingtonUSA

Personalised recommendations