Optical and Quantum Electronics

, Volume 43, Issue 6–10, pp 121–127 | Cite as

The effects of non-Kolmogorov turbulence on the orbital angular momentum of a photon-beam propagation in a slant channel

  • Xueli Sheng
  • Yixin Zhang
  • Xiang Wang
  • Zhiping Wang
  • Yun Zhu
Article

Abstract

We analyze the effects of non-Kolmogorov turbulence on the orbital angular momentum of a photon-beam propagation through atmosphere. The probability models of the orbital angular momentum crosstalk for single photons propagation in the channel with the non-Kolmogorov turbulence aberration have been established. It is found that the crosstalk among orbits increases as the orbital angular momentum quantum number of launch beam rises, the ground turbulence strength \({C_n^{2} \left( 0 \right)}\) enhances or the non-Kolmogorov parameter α of turbulence-channel increases. As non-Kolmogorov parameter α approaches 4, the crosstalk probabilities among neighbor orbits are approximately the same.

Keywords

Orbital angular momentum Non-Kolmogorov turbulence Photon-beam Laguerre-Gaussian beam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksenov V.P.: Fluctuations of orbital angular momentum of vortex laser-beam in turbulent atmosphere. Proc. SPIE 5892, 58921Y-1-8 (2005)Google Scholar
  2. Allen L., Beijersbergen M.W., Spreeuw R.J.C., Woerdman J.P.: Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)ADSCrossRefGoogle Scholar
  3. Andrews L.C., Phillips R.L.: Laser Beam Propagation Through Random Media. SPIE, Washington (1998)Google Scholar
  4. Anguita J.A., Neifeld M.A., Vasic B.V.: Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-apace optical link. Appl. Opt. 47(13), 2414–2429 (2008)ADSCrossRefGoogle Scholar
  5. Berdja A.: On the DIMM interpretation of non-Kolmogorov turbulence in the atmospheric surface layer. Mon. Not. R. Astron. Soc. 409(2), 722–726 (2010)ADSCrossRefGoogle Scholar
  6. Glenn A.T., Robert W.B.: Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbit angular momentum. Opt. Lett. 34(2), 142–144 (2009)CrossRefGoogle Scholar
  7. Molina-Terriza, G., Torres, J.P., Torner, L.: Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 257901-1-4 (2002)Google Scholar
  8. Paterson C.: Atmospheric turbulence and free-space optical communication using orbital angular momentum of single photons. SPIE 5572, 187–198 (2004)ADSCrossRefGoogle Scholar
  9. Paterson, C.: Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901-1-4 (2005)Google Scholar
  10. Stribling, B.E., Welsh, B.M., Roggemann, M.C.: Optical propagation in non-Kolmogorov atmospheric turbulence. Proc. SPIE. 2471, 2471-22-1-7 (1995)Google Scholar
  11. Toselli I., Andrews L.C., Phillips R.L., Ferrero V.: Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence. Opt. Eng. 47(2), 026003-1-9 (2008)ADSCrossRefGoogle Scholar
  12. Uribe-Patarroyo N., Alvarez-Herrero A., Belenguer T.: Measurement of the quantum superposition state of an imaging ensemble of photons prepared in orbital angular momentum states using a phase-diversity method. Phys. Rev. A 81(5), 053822-1-6 (2010a)ADSCrossRefGoogle Scholar
  13. Uribe-Patarroyo N., Alvarez-Herrero A., Belenguer T.: A comprehensive approach to deal with instrumental optical aberrations effects in high-accuracy photon’s orbital angular momentum spectrum measurements. Opt. Express 18(20), 21111–21120 (2010b)ADSCrossRefGoogle Scholar
  14. Uribe-Patarroyo N., Alvarez-Herrero A., López Ariste A., Asensio Ramos A., Belenguer T., Manso Sainz R., LeMen C., Gelly B.: Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations. Astron. Astrophys. 526(A56), 1–5 (2011)Google Scholar
  15. Vetelino F.E.S., Morgana R.J.: Model validation of turbulence effects on orbital angular momentum of single photons for optical communication. Proc. SPIE 7685, 76850R-1-10 (2010)Google Scholar
  16. Vetelino F.E.S., Morgan R.J.: Orbital angular momentum receiver bandwidth for laser communications systems operating in atmospheric turbulence. Proc. SPIE 8038, 80380L (2011)CrossRefGoogle Scholar
  17. Wang J., Jia J., Xu J., Wang Y., Zhang Y.: The probability of orbital angular momentum states of single photons with Z-tilt corrected residual aberration in a slant path turbulent atmosphere. Optik 122(11), 996–999 (2011)ADSCrossRefGoogle Scholar
  18. Wheelon A.D.: Electromagnetic Scintillation II. Weak Scattering. Cambridge University Press, Cambridge (2003)Google Scholar
  19. Zhang Y., Cang J.: Effects of turbulent aberrations on probability distribution of orbital angular momentum for optical communication. Chin. Phys. Lett. 26(7), 074220-1-4 (2009)ADSGoogle Scholar
  20. Zhang Y., Wang Y., Xu J., Wang J., Jia J.: Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel. Opt. Commun. 284(5), 1132–1138 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Xueli Sheng
    • 1
  • Yixin Zhang
    • 1
  • Xiang Wang
    • 1
  • Zhiping Wang
    • 1
  • Yun Zhu
    • 1
  1. 1.School of ScienceJiangnan UniversityWuxiChina

Personalised recommendations