Advertisement

Optical and Quantum Electronics

, Volume 44, Issue 3–5, pp 183–188 | Cite as

A flexible, plane-wave based multiband \({\mathbf{k}\cdot\mathbf{p}}\) model

  • Oliver MarquardtEmail author
  • Stefan Schulz
  • Christoph Freysoldt
  • Sixten Boeck
  • Tilmann Hickel
  • Eoin P. O’Reilly
  • Jörg Neugebauer
Article

Abstract

In this work, we present a highly generalized implementation of multiband \({\mathbf{k}\cdot\mathbf{p}}\) models. We have achieved a high efficiency of our approach by incorporating it in a plane-wave framework within the Density Functional Theory package S/PHI/nX. To demonstrate the flexibility and applicability of our code, we have chosen two example studies that are directly accessible with the standard eight-band \({\mathbf{k}\cdot\mathbf{p}}\) model. By employing a 14-band \({\mathbf{k}\cdot\mathbf{p}}\) model for the description of pyramidal InAs/GaAs quantum dots (QDs), we show that this model is able to accomodate for the correct symmetry of the underlying zincblende lattice, which is not reflected in the standard eight-band model. Our second example provides a description of site-controlled (111)-oriented InGaAs/GaAs QDs. The extremely small aspect ratio of these QDs makes a description using conventional \({\mathbf{k}\cdot\mathbf{p}}\) Hamiltonians computationally highly expensive. We have therefore rotated the standard eight-band Hamiltonian, to suit the description of these systems. The studies of electronic properties of the above mentioned model systems demonstrate the efficiency and flexibility of our approach.

Keywords

Nanostructures Electronic properties Multiband \({\mathbf{k}\cdot\mathbf{p}}\) formalism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahder T.: Eight-band \({\mathbf{k}\cdot\mathbf{p}}\) model of strained zinc-blende crystals. Phys. Rev. B 41, 11992–12001 (1990)ADSCrossRefGoogle Scholar
  2. Baer N., Schulz S., Gartner P., Schumacher S., Czycholl G., Jahnke F.: Influence of symmetry and Coulomb correlation effects on the optical properties of nitride quantum dots. Phys. Rev. B 76, 075310–075323 (2007)ADSCrossRefGoogle Scholar
  3. Bester G., Zunger A.: Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 71, 045318–045329 (2005)ADSCrossRefGoogle Scholar
  4. Boeck S., Freysoldt C., Dick A., Ismer L., Neugebauer J.: The object-oriented DFT program library S/PHI/nX. Comput. Phys. Commun. 182, 543–554 (2011)ADSCrossRefGoogle Scholar
  5. Daudin B.: Polar and nonpolar quantum dots. J. Phys. Condens. Matter 20, 473201–473215 (2008)ADSCrossRefGoogle Scholar
  6. Fonoberov V.A., Balandin A.A.: Excitonic properties of strained wurtzite and zinc-blende GaN/AlxGa1-xN quantum dots. J. Appl. Phys. 94, 7178–7186 (2003)ADSCrossRefGoogle Scholar
  7. Hermann C., Weisbuch C.: \({\mathbf{k}\cdot\mathbf{p}}\) perturbation theory in III-V compounds and alloys: a reexamination. Phys. Rev. B 15, 823–833 (1977)ADSCrossRefGoogle Scholar
  8. Healy S.B., Young R.J., Mereni L.O., Dimastrodonato V., Pelucchi E., O’Reilly E.P.: Physics of novel site controlled InGaAs quantum dots on (111) oriented substrates. Physica E 42, 2761–2764 (2009)ADSCrossRefGoogle Scholar
  9. Jancu J.M., Scholz R., De Andrada e Silva E.A., La Rocca G.C.: Atomistic spin-orbit coupling and \({\mathbf{k}\cdot\mathbf{p}}\) parameters in III-V semiconductors. Phys. Rev. B 72, 193201–193204 (2005)ADSCrossRefGoogle Scholar
  10. Marquardt O., Gambaryan K.M., Hickel T., Aroutiounian V.M., Neugebauer J.: Growth process, characterization, and modeling of electronic properties of coupled InAsSbP nanostructures. J. Appl. Phys. 110, 043708–043713 (2011)ADSCrossRefGoogle Scholar
  11. Marquardt O., Boeck S., Freysoldt C., Hickel T., Neugebauer J.: Plane-wave implementation of the real-space k · p formalism and continuum elasticity theory. Comput. Phys. Commun. 181, 765–771 (2010)MathSciNetADSCrossRefGoogle Scholar
  12. Marquardt, O., Freysoldt, C., Boeck, S., Hickel, T., Neugebauer, J.: to be submittedGoogle Scholar
  13. Marquardt O., Mourad D., Schulz S., Hickel T., Czycholl G., Neugebauer J.: Comparison of atomistic and continuum theoretical approaches to determine electronic properties of GaN/AlN quantum dots. Phys. Rev. B 78, 235302–235310 (2008)ADSCrossRefGoogle Scholar
  14. Marquardt, O., O’Reilly, E.P., Schulz, S.: to be submittedGoogle Scholar
  15. Mereni L.O., Dimastrodonato V., Young R.J., Pelucchi E.: A site-controlled quantum dot system offering both high uniformity and spectral purity. Appl. Phys. Lett. 94, 223121–223123 (2009)ADSCrossRefGoogle Scholar
  16. Pfeffer P., Zawadzki W.: Five-level \({\mathbf{k}\cdot\mathbf{p}}\) model for the conduction and valence bands of GaAs and InP. Phys. Rev. B 53, 12813–12828 (1996)ADSCrossRefGoogle Scholar
  17. Pelucchi E., Watanabe S., Leifer K., Zhu Q., Dwir B., Rios P., Kapon E.: Mechanisms of quantum dot energy engineering by metalorganic vapor phase epitaxy on patterned nonplanar substrates. Nano Lett. 7, 1282–1285 (2007)ADSCrossRefGoogle Scholar
  18. Pryor C.: Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations. Phys. Rev. B 57, 7190–7195 (1998)ADSCrossRefGoogle Scholar
  19. Schliwa A., Winkelnkemper M., Bimberg D.: Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As/GaAs quantum dots. Phys. Rev. B 76, 205324–205340 (2007)ADSCrossRefGoogle Scholar
  20. Schulz S., Caro M.A., O’Reilly E.P., Marquardt O.: Symmetry-adapted calculations of strain and polarization fields in (111)-oriented zinc-blende quantum dots. Phys. Rev. B 84, 125312–125325 (2011)ADSCrossRefGoogle Scholar
  21. Stier, O.: Electronic Properties of Quantum Dots and Wires, Berlin (2000)Google Scholar
  22. Stier O., Grundmann M., Bimberg D.: Electronic and optical properties of strained quantum dots modeled by 8-band \({\mathbf{k}\cdot\mathbf{p}}\) theory. Phys. Rev. B 59, 5688–5701 (1999)ADSCrossRefGoogle Scholar
  23. Stock E., Warming T., Ostapenko I., Rodt S., Schliwa A., Tofflinger J.A., Lochmann A., Toropov A.I., Moshchenko S.A., Dmitriev D.V., Haisler V.A., Bimberg D.: Single-photon emission from InGaAs quantum dots grown on (111) GaAs. Appl. Phys. Lett. 96, 093112–093114 (2010)ADSCrossRefGoogle Scholar
  24. Zhao Q., Mei T.: J. Appl. Phys. 109, 063101–063113 (2011)ADSCrossRefGoogle Scholar
  25. Zhu Q., Karlsson K.F., Pelucchi E., Kapon E.: Transition from two-dimensional to three-dimensional quantum confinement in semiconductor quantum wires/quantum dots. Nano Lett. 7, 2227–2233 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Oliver Marquardt
    • 1
    Email author
  • Stefan Schulz
    • 1
  • Christoph Freysoldt
    • 2
  • Sixten Boeck
    • 3
  • Tilmann Hickel
    • 2
  • Eoin P. O’Reilly
    • 1
  • Jörg Neugebauer
    • 2
  1. 1.Tyndall National InstituteLee Maltings, CorkIreland
  2. 2.Max-Planck-Institut für EisenforschungDüsseldorfGermany
  3. 3.Gemmantics IT-Consulting UGErkrathGermany

Personalised recommendations