Optical and Quantum Electronics

, Volume 42, Issue 11–13, pp 785–791 | Cite as

Modified rate equation model including the photon–photon resonance



We show that, when the longitudinal confinement factor in an edge-emitting laser is treated as a dynamic variable, the modulation transfer function has an extra term. This term produces a supplementary photon–photon resonance peak in the modulation response at a frequency corresponding to the frequency separation between longitudinal modes, when these modes are phase-locked long enough (quasi-phase-locked). The photon–photon resonance peak is strongest when two consecutive quasi-phase-locked dominant longitudinal modes have similar longitudinal envelopes and share equally the photon population.


Longitudinal modes Modulation response Modulation transfer function Photon–photon resonance Rate equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bach L., Kaiser W., Reithmaier J.P., Forchel A., Gioannini M., Feies V., Montrosset I.: 22-GHz modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography. IEEE Photon. Technol. Lett. 16, 18–20 (2004)ADSCrossRefGoogle Scholar
  2. Coldren L.A., Corzine S.W.: Diode Lasers and Photonic Integrated Circuits. Wiley, New York (1995)Google Scholar
  3. Feiste U.: Optimization of modulation bandwidth of DBR lasers with detuned bragg reflectors. IEEE J. Quantum Electron. 34, 2371–2379 (1998)ADSCrossRefGoogle Scholar
  4. Gerschütz F., Fischer M., Koeth J., Krestnikov I., Kovsh A., Schilling C., Kaiser W., Höfling S., Forchel A.: 1.3 μm quantum dot laser in coupled-cavity-injection-grating design with bandwidth of 20 GHz under direct modulation. Opt. Express 16, 5596–5601 (2008)ADSCrossRefGoogle Scholar
  5. Kaiser W., Bach L., Reuthmaier J.P., Forchel A.: High-speed coupled-cavity injection grating lasers with tailored modulation transfer functions. IEEE Photon. Technol. Lett. 16, 1997–1999 (2004)ADSCrossRefGoogle Scholar
  6. Kjebon O., Schatz R., Lourdudoss S., Nilsson S., Stålnacke B., Bäckbom L.: 30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm. Electron. Lett. 33, 488–489 (1997)CrossRefGoogle Scholar
  7. Morthier G., Schatz R., Kjebon O.: Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization. IEEE J. Quantum Electron. 36, 1468–1475 (2000)ADSCrossRefGoogle Scholar
  8. Radziunas M., Glitzky A., Bandelow U., Wolfrum M., Troppenz U., Kreissl J., Rehbein W.: Improving the modulation bandwidth in semiconductor lasers by passive feedback. IEEE J. Sel. Top. Quantum Electron. 13, 136–142 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Optoelectronics Research CentreTampere University of TechnologyTampereFinland

Personalised recommendations