Advertisement

Optical and Quantum Electronics

, Volume 42, Issue 11–13, pp 713–719 | Cite as

The effect of facet reflections in index-coupled distributed feedback lasers with coated facets

  • Antti Laakso
  • Jukka Karinen
  • Jarkko Telkkälä
  • Mihail Dumitrescu
Article

Abstract

The effect of facet reflections and different grating parameters on side-mode suppression ratio in index-coupled distributed feedback lasers without a phase-shift section is analyzed. The effect of uncontrollable facet positions on side-mode suppression ratio is studied when the grating coupling coefficient, the grating filling factor, the grating order, the device length and the facet reflectivities are varied. The single-mode device yield and the facet reflectivities needed for achieving a high yield are evaluated, the reflectivity of the anti-reflection coated facet is optimized as a function of the coupling strength and the effect of facet reflections on the other laser characteristics is shown.

Keywords

Distributed feedback lasers Facet phase Facet reflectivity Side-mode suppression ratio Single-mode yield 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buus J.: Dynamic single-mode operation of DFB lasers with phase shifted gratings and reflecting mirrors. IEE Proc. J. 133, 163–164 (1986)Google Scholar
  2. Coldren L.A., Corzine S.W.: Diode Lasers and Photonic Integrated Circuits. Wiley, New York (1995)Google Scholar
  3. David K., Morthier G., Vankwikelberge P., Baets R.G., Wolf T., Borchert B.: Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield. IEEE J. Quantum Electron. 27, 1714–1723 (1991)ADSCrossRefGoogle Scholar
  4. Glinski J., Makino T.: Yield analysis of second-order DSM DFB lasers and implications for design. IEEE J. Quantum Electron. 23, 849–859 (1987)ADSCrossRefGoogle Scholar
  5. Kamite K., Soda H., Kihara K., Nishimoto H., Ishikawa H.: Effect of front facet reflectivity on transmission characteristics of asymmetric reflectivity DFB lasers. Electron. Lett. 24, 1228–1229 (1988)CrossRefGoogle Scholar
  6. Kinoshita J.-I., Matsumoto K.: Yield analysis of SLM DFB lasers with an axially-flattened internal field. IEEE J. Quantum Electron. 25, 1324–1332 (1989)ADSCrossRefGoogle Scholar
  7. Kwon K.-Y.: Effect of grating phase difference on single-mode yield in complex-coupled DFB lasers with gain and index gratings. IEEE J. Quantum Electron. 32, 1937–1949 (1996)ADSCrossRefGoogle Scholar
  8. Laakso A., Dumitrescu M., Viheriälä J., Karinen J., Suominen M., Pessa M.: Optical modeling of laterally-corrugated ridge-waveguide gratings. Opt. Quant. Electron. 40, 907–920 (2008)CrossRefGoogle Scholar
  9. Li G.P., Makino T.: Single-mode yield analysis of partly gain-coupled multiquantum-well DFB lasers. IEEE Photon. Technol. Lett. 5, 1282–1284 (1993)ADSCrossRefGoogle Scholar
  10. Mols P.P.G., Kuindersma P.I., van Es-Spiekman W., Baele I.A.F.: Yield and device characteristics of DFB lasers: statistics and novel design in theory and experiment. IEEE J. Quantum Electron. 25, 1303–1313 (1989)ADSCrossRefGoogle Scholar
  11. Nakano Y., Uchida Y., Tada K.: Highly efficient single longitudinal-mode oscillation capability of gain- coupled distributed semiconductor lasers – advantage of asymmetric facet coating. IEEE Photon. Technol. Lett. 4, 308–311 (1992)ADSCrossRefGoogle Scholar
  12. Susa N.: Fluctuations of the laser characteristics and the effect of the index-coupling component in the gain-coupled DFB laser. IEEE J. Quantum Electron. 33, 2255–2265 (1997)ADSCrossRefGoogle Scholar
  13. Streifer W., Burnham R.D., Scifres D.R.: Effect of external reflectors on longitudinal modes of distributed feedback lasers. IEEE J. Quantum Electron. 11, 154–161 (1975)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Antti Laakso
    • 1
  • Jukka Karinen
    • 1
  • Jarkko Telkkälä
    • 1
  • Mihail Dumitrescu
    • 1
  1. 1.Optoelectronics Research CentreTampere University of TechnologyTampereFinland

Personalised recommendations