Optical and Quantum Electronics

, Volume 42, Issue 11–13, pp 699–703

Modeling of polarization effects in InGaN PIN solar cells

  • M. Lestrade
  • Z. Q. Li
  • Y. G. Xiao
  • Z. M. Simon Li
Article
  • 298 Downloads

Abstract

In this paper, we study the effect of polarization on the performance of InGaN solar cells. By using the APSYS software, we show that the performance of common device designs is adversely affected by the interface charges between the contact layers and absorber. An improved design based on graded layers in the \({[0 0 0\overline{1}]}\) or N-face growth direction is shown to be almost immune to these effects.

Keywords

Solar cell Nitride polarization N-face growth Numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown G. et al.: Finite element simulations of compositionally graded InGaN solar cells. Sol. Energy Mater Solar Cells 94, 478–483 (2010)CrossRefGoogle Scholar
  2. Cai, X.M., et al.: Fabrication and characterization of InGaN pin homojunction solar cell. Appl. Phys. Lett. 95, 173, 504 (2009). doi:10.1063/1.3254215 Google Scholar
  3. Crosslight Software: Crosslight Device Simulation Software—General manual (2009)Google Scholar
  4. Fiorentini, V., et al.: Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Appl. Phys. Lett. 80, 1204 (2002) doi:10.1063/1.1448668 ADSCrossRefGoogle Scholar
  5. Jampana, B., et al.: InGaN solar cell design by surface inversion caused by piezoelectric polarization. In: Proceedings of 34th PVSC, 002179–002182 (2009)Google Scholar
  6. Matsuoka T. et al.: Optical bandgap energy of wurtzite InN. Appl. Phys. Lett. 81, 1246 (2002). doi:10.1063/1.1499753 ADSCrossRefGoogle Scholar
  7. Mayrock O. et al.: Polarization charge screening and indium surface segregation in InGaN/GaN single and multiple quantum wells. Phys. Rev. B. 62(24), 16870–16880 (2000)ADSCrossRefGoogle Scholar
  8. Neufeld, C.J., et al.: High quantum efficiency InGaN/GaN solar cells with 2.95eV band gap. Appl. Phys. Lett. 93, 143, 502 (2008) doi:10.1063/1.2988894 Google Scholar
  9. Simon J. et al.: Polarization-induced hole doping in wide band-gap uniaxial semiconductor heterostructures. Science 327(5961), 60–64 (2010)ADSCrossRefGoogle Scholar
  10. Wu J. et al.: Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967 (2002). doi:10.1063/1.1482786 ADSCrossRefGoogle Scholar
  11. Xiao, Y., et al.: Modeling of InGaN PIN solar cells with defect traps and polarization interface charges. In: Proceedings of 35th PVSC, 003378–003382 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • M. Lestrade
    • 1
  • Z. Q. Li
    • 1
  • Y. G. Xiao
    • 1
  • Z. M. Simon Li
    • 1
  1. 1.Crosslight Software Inc.BurnabyCanada

Personalised recommendations