Optical and Quantum Electronics

, Volume 42, Issue 11–13, pp 659–666 | Cite as

Invited Paper: Design and modeling of a transistor vertical-cavity surface-emitting laser

  • Wei Shi
  • Behnam Faraji
  • Mark Greenberg
  • Jesper Berggren
  • Yu Xiang
  • Mattias Hammar
  • Michel Lestrade
  • Zhi-Qiang Li
  • Z. M. Simon Li
  • Lukas Chrostowski
Article

Abstract

A multiple quantum well (MQW) transistor vertical-cavity surface-emitting laser (T-VCSEL) is designed and numerically modeled. The important physical models and parameters are discussed and validated by modeling a conventional VCSEL and comparing the results with the experiment. The quantum capture/escape process is simulated using the quantum-trap model and shows a significant effect on the electrical output of the T-VCSEL. The parameters extracted from the numerical simulation are imported into the analytic modeling to predict the frequency response and simulate the large-signal modulation up to 40 Gbps.

Keywords

Transistor laser VCSEL Numerical modeling Quantum-trap model Direct modulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam M.A., Hybertsen M.S., Smith R.K., Baraff G.A.: Simulation of semiconductor quantum well lasers. IEEE Trans. Electron Devices 47, 1917 (2000)ADSCrossRefGoogle Scholar
  2. Ahrenkiel R.K., Ellingson R., Metzger W.: Auger recombination in heavily carbon-doped GaAs. Appl. Phys. Lett. 78, 1879–1881 (2001)ADSCrossRefGoogle Scholar
  3. Chuang S.L.: Efficient band structure calculations of strained quantum wells. Phys. Rev. B 43, 9649–9661 (1991)ADSCrossRefGoogle Scholar
  4. Chen T.R., Utaka K., Yariv , Zhuang Y.H., Liu Y.Y., Yariv A.: Vertical integration of an InGaAsP/InP heterojunction bipolar transistor and a double heterostructure laser. Appl. Phys. Lett. 50, 874–876 (1987)ADSCrossRefGoogle Scholar
  5. Crosslight Device Simulation Software—A General Description. Crosslight Software Inc. (2005)Google Scholar
  6. Duan Z., Shi W., Chrostowski L., Huang X., Zhou N., Chai G.: Design and epitaxy of 1.5 μm InGaAsP-InP mqw material for a transistor laser. Opt. Express 18, 1501–1509 (2010)ADSCrossRefGoogle Scholar
  7. Faraji B., Shi W., Pulfrey D.L., Chrostowski L.: Common-emitter and common-base small-signal operation of the transistor laser. Appl. Phys. Lett. 93, 143503 (2008)ADSCrossRefGoogle Scholar
  8. Faraji B., Shi W., Pulfrey D.L., Chrostowski L.: Analytical modeling of the transistor laser. IEEE J. Quantum Electron. 15, 594–603 (2009)CrossRefGoogle Scholar
  9. Faraji, B., Jaeger, N.A.F., Chrostowski, L.: Modelling the effect of the feedback on the small signal modulation of the transistor laser. In: Proceedings of 23rd Annual Meeting of the IEEE Photonics Society, vol. 11, p. WX4. Denver, CO, USA (2010)Google Scholar
  10. Feng M., Holonyak J.N., Walter G., Chan R.: Room temperature continuous wave operation of a heterojunction bipolar transistor laser. Appl. Phys. Lett. 87, 131103 (2005)ADSCrossRefGoogle Scholar
  11. Hadley G.R., Lear K.L., Warren M.E., Choquette K.D., Scott J.W., Corzine S.W.: Comprehensive numerical modeling of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 32, 607–616 (1996)ADSCrossRefGoogle Scholar
  12. Hsu C.F., Zory J.P.S., Wu C.-H.: Coulomb enhancement in InGaAs-GaAs quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 3, 158–165 (1997)CrossRefGoogle Scholar
  13. Jain F., Chung C., LaComb R., Gokhale M.: Resonant tunneling transistor lasers: a new approach to obtain multi-state switching and bistable operation. Int. J. Infrared Millim. Waves 14, 1311–1322 (1993)ADSCrossRefGoogle Scholar
  14. Katz J., Bar-Chaim N., Chen P.C., Margalit S., Ury I., Wilt D., Yust M., Yariv A.: A monolithic integration of GaAs/GaAlAs bipolar transistor and heterostructure laser. Appl. Phys. Lett. 37, 211–213 (1980)ADSCrossRefGoogle Scholar
  15. Koyama I.: Recent advances of VCSEL photonics. IEEE J. Lightwav. 24, 4502–4513 (2006)CrossRefGoogle Scholar
  16. Kulakovskii V.D., Andersson T.G., Butov L.V.: Band edge offset in strained InxGa1-xAs/GaAs quantum wells measured by high-excitation photoluminescence. Semicond. Sci. Technol. 8, 477–480 (1993)ADSCrossRefGoogle Scholar
  17. Liu Y., Ng W.-C., Choquette K.D., Hess K.: Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 41, 15–25 (2005)ADSCrossRefGoogle Scholar
  18. Mori Y., Shibata J., Sasai Y., Serizawa H., Kaijiwara T.: Operation principle of the InGaAsP/InP laser transistor. Appl. Phys. Lett. 47, 649–651 (1985)ADSCrossRefGoogle Scholar
  19. Nawaz M., Permthammasin K.: A design analysis of a GaInP/GaInAs/GaAs-based 980 nm al-free pump laser using self-consistent numerical simulation. Semicond. Sci. Technol. 16, 877–884 (2001)ADSCrossRefGoogle Scholar
  20. Nagarajan R.: Carrier transport effects in quantum well lasers: an overview. Opt. Quantum Electron. 26, S647–S666 (1994)CrossRefGoogle Scholar
  21. Palankovski V., Quay R.: Analysis and Simulation of Heterostructure Devices. Springer, New York (2004)CrossRefGoogle Scholar
  22. Piprek J., Lasaosa D., Pasquariello D., Bowers J.E.: Optimization of GaAs amplification photodetectors for 700% quantum efficiency. IEEE J. Sel. Top. Quantum Electron. 9, 776–782 (2003)CrossRefGoogle Scholar
  23. Piprek J., Tröger T., Schröter B., Kolodzey J., Ih C.S.: Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors. IEEE Photon. Technol. Lett. 10, 81–83 (1998)ADSCrossRefGoogle Scholar
  24. Shi W., Chrostowski L., Faraji B.: Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser. IEEE Photon. Technol. Lett. 20, 2141–2143 (2008)ADSCrossRefGoogle Scholar
  25. Sze S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley-Interscience, New York (1981)Google Scholar
  26. Seki S., Lui W.W., Yokoyama K.: Explanation for the temperature insensitivity of the Auger recombination rates in 1.55 μm InP-based strained-layer quantum-well lasers. Appl. Phys. Lett. 66, 3093–3095 (1995)ADSCrossRefGoogle Scholar
  27. Shirao, M., Lee, N.N.S., Arai, S.: Large signal analysis of AlGaInAs/InP laser transistor. In: Conference on Lasers and Electro-Optics. p. CMY7, San Jose, CA (2010)Google Scholar
  28. Then H.W., Feng M., Holonyak J.N.: Microwave circuit model for the three-port transistor laser. Appl. Phys. Lett. 107, 094509 (2010)Google Scholar
  29. Then H.W., Wu C.H., Walter G., Feng M., Holonyak N.: Electrical-optical signal mixing and multiplication (2 → 22 GHz) with a tunnel junction transistor laser. Appl. Phys. Lett. 94, 101114 (2009)ADSCrossRefGoogle Scholar
  30. Taflove A., Hagness S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (2005)Google Scholar
  31. Vurgaftman I., Meyer J.R.: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)ADSCrossRefGoogle Scholar
  32. Zhang L., Leburton J.P.: Modeling of the transient characteristics of heterojunction bipolar transistor lasers. IEEE J. Quantum Electron. 45, 359–366 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Wei Shi
    • 1
  • Behnam Faraji
    • 1
  • Mark Greenberg
    • 1
  • Jesper Berggren
    • 2
  • Yu Xiang
    • 2
  • Mattias Hammar
    • 2
  • Michel Lestrade
    • 3
  • Zhi-Qiang Li
    • 3
  • Z. M. Simon Li
    • 3
  • Lukas Chrostowski
    • 1
  1. 1.Department of Electrical and Computer EngineeringThe University of British ColumbiaVancouverCanada
  2. 2.School of Information and Communication Technology (ICT)The Royal Institute of Technology (KTH)KistaSweden
  3. 3.Crosslight Software Inc.BurnabyCanada

Personalised recommendations