Optical and Quantum Electronics

, Volume 42, Issue 11–13, pp 667–677 | Cite as

Numerical analysis of steady-state and transient charge transport in organic semiconductor devices

  • Evelyne KnappEmail author
  • Beat Ruhstaller


A one-dimensional numerical model for the simulation of organic semiconductor devices such as organic light-emitting devices and solar cells is presented. The model accounts for the energetic disorder in organic semiconductors and assumes that charge transport takes place by a hopping process between uncorrelated sites. Therefore a Gaussian density of states and the use of the Fermi-Dirac statistics are introduced. The model includes density-, field- and temperature- dependent mobilities as well as the generalized Einstein relation. The numerical methods to solve the underlying drift-diffusion problem perform well in combination with the novel physical model ingredients. We demonstrate efficient numerical techniques that we employ to simulate common experimental characterization techniques such as current-voltage, dark-injection transient and electrical impedance measurements. This is crucial for physical model validation and for material parameter extraction. We also highlight how the numerical solution of the novel model differs from the analytical solution of the simplified drift-only model.


Numerical simulation Organic light-emitting device Small signal analysis Extended Gaussian disorder model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blom P.W.M., de Jong M.J.M., Vleggaar J.J.M.: Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68(23), 3308 (1996)ADSCrossRefGoogle Scholar
  2. Crone B.K., Davids P.S., Campbell I.H., Smith D.L.: Device model investigation of bilayer organic light emitting diodes. J. Appl. Phys. 87(4), 1974 (2000)ADSCrossRefGoogle Scholar
  3. Helfrich W., Mark P.: Raumladungsbeschränkte ströme in anthrazen als mittel zur bestimmung der beweglichkeit von defektelektronen. Z. Phys. 166, 370 (1962)ADSCrossRefGoogle Scholar
  4. Knapp E., Häusermann R., Schwarzenbach H., Ruhstaller B.: Numerical simulation of charge transport in disordered organic semiconductor devices. J. Appl. Phys. 108(5), 054504 (2010)ADSCrossRefGoogle Scholar
  5. Mott N.P., Gurney R.W.: Electronic Processes in Ionic Crystals. Oxford Univ. Press, London (1938)Google Scholar
  6. Pasveer W.F., Cottaar J., Tanase C., Coehoorn R., Bobbert P.A., Blom P.W.M. et al.: Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94(20), 206601 (2005)ADSCrossRefGoogle Scholar
  7. Perucco B., Reinke N.A., Müller F., Rezzonico D., Ruhstaller B.: The influence of the optical environment on the shape of the emission profile and methods of its determination. Proc. SPIE 7722, 77220F (2010)ADSCrossRefGoogle Scholar
  8. Preezant Y., Roichman Y., Tessler N.: Amorphous organic devices—degenerate semiconductors. J. Phys. Cond. Matt. 14, 9913 (2002)ADSCrossRefGoogle Scholar
  9. Roichman Y., Tessler N.: Generalized einstein relation for disordered semiconductors: implications for device performance. Appl. Phys. Lett. 80(11), 1948 (2002)ADSCrossRefGoogle Scholar
  10. Ruhstaller B., Carter S.A., Barth S., Riel H., Riess W., Scott J.C.: Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes. J. Appl. Phys. 89(8), 4575 (2001)ADSCrossRefGoogle Scholar
  11. Ruhstaller B., Beierlein T., Riel H., Karg S., Scott J.C., Riess W.: Simulating electronic and optical processes in multilayer organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 9(3), 723 (2003)CrossRefGoogle Scholar
  12. Scharfetter D.L., Gummel H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electr. Dev. 16(28), 64 (1969)CrossRefGoogle Scholar
  13. Scott J.C., Malliaras G.G.: Charge injection and recombination at the metalorganic interface. Chem. Phys. Lett. 299, 115 (1999)ADSCrossRefGoogle Scholar
  14. Shao J., Wright G.: Characteristics of the space-charge-limited dieletric diode at very high frequencies. Solid-State Electron. 3, 291 (1961)ADSCrossRefGoogle Scholar
  15. van Mensfoort S.L.M., Coehoorn R.: Effect of gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys. Rev. B 78(16), 085207 (2008)ADSCrossRefGoogle Scholar
  16. van Mensfoort S.L.M., Vulto S.I.E., Janssen R.A.J., Coehoorn R.: Hole transport in polyfluorene-based sandwich-type devices: quantitative analysis of the role of energetic disorder. Phys. Rev. B 78(8), 085208 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Institute of Computational PhysicsZurich University of Applied SciencesWinterthurSwitzerland
  2. 2.Fluxim AGFeusisbergSwitzerland

Personalised recommendations