Optical and Quantum Electronics

, Volume 42, Issue 2, pp 89–95

Electron leakage effects on GaN-based light-emitting diodes



Nitride-based light-emitting diodes suffer from a reduction (droop) of the internal quantum efficiency (IQE) with increasing injection current. Using advanced device simulation, we investigate the impact of electron leakage on the IQE droop for different properties of the electron blocker layer (EBL). The simulations show a strong influence of the EBL acceptor density on the droop. We also find that the electron leakage decreases with increasing temperature, which contradicts common assumptions.


Gallium nitride Light-emitting diode Electron leakage Efficiency droop Electron blocker layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown I.H. et al.: Determination of the piezoelectric field in InGaN quantum wells. Appl. Phys. Lett. 86, 131108 (2005)CrossRefADSGoogle Scholar
  2. Bulashevich K.A. et al.: Simulation of visible and ultraviolet group-III nitride light emitting diodes. J. Comput. Phys. 213, 214 (2006)MATHCrossRefADSGoogle Scholar
  3. Chichibu S.F. et al.: Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Appl. Phys. Lett. 73, 2006 (1998)CrossRefADSGoogle Scholar
  4. Crosslight Software, Burnaby, Canada (http://www.crosslight.com)
  5. Fiorentini V. et al.: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 80, 1204 (2002)CrossRefADSGoogle Scholar
  6. Flory C.A., Hasnain G.: Modeling of GaN optoelectronic devices and strain-induced piezoelectric effects. IEEE J. Quant. Electron. 37, 244 (2001)CrossRefADSGoogle Scholar
  7. Hader J. et al.: On the importance of radiative and Auger losses in GaN-based quantum wells. Appl. Phys. Lett. 92, 261103 (2008)CrossRefADSGoogle Scholar
  8. Hirayama H. et al.: 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys. Status Solidi A 206, 1176 (2009)Google Scholar
  9. Ibbetson J.P. et al.: Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77, 250 (2000)CrossRefADSGoogle Scholar
  10. Kim M.H. et al.: Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007)CrossRefADSGoogle Scholar
  11. Knauer A. et al.: MOVPE growth for UV-LEDs. Proc. SPIE 7231, 72310G (2009)CrossRefGoogle Scholar
  12. Laubsch A. et al.: On the origin of IQE-‘droop’ in InGaN LEDs. Phys. Status Solidi C 6, S913 (2009)CrossRefADSGoogle Scholar
  13. Monemar B. et al.: Mg-related acceptors in GaN. Phys. Status Solidi C 7, 1850–1852 (2010)CrossRefADSGoogle Scholar
  14. Piprek J., Li S.: Ch 10. In: Piprek, J. (ed.) Optoelectronic Devices: Advanced Simulation and Analysis., Springer, New York (2005)Google Scholar
  15. Piprek J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic Press, San Diego (2003)Google Scholar
  16. Piprek J. et al.: Effects of built-in polarization on InGaN/GaN vertical-cavity surface-emitting lasers. IEEE Phot. Technol. Lett. 18, 7 (2006)CrossRefADSGoogle Scholar
  17. Piprek, J. (ed.): Nitride Semiconductor Devices: Principles and Simulation. Wiley-VCH, Berlin (2007)Google Scholar
  18. Piprek J.: Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 207, 2217 (2010)CrossRefADSGoogle Scholar
  19. Renner F. et al.: Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy. Appl. Phys. Lett. 81, 490–492 (2002)CrossRefADSGoogle Scholar
  20. Shen Y.C. et al.: Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91(14), 141101 (2007)CrossRefADSGoogle Scholar
  21. Vampola K.J. et al.: Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Appl. Phys. Lett. 94, 061116 (2009)CrossRefADSGoogle Scholar
  22. Yang Y. et al.: Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes. IEEE Trans. Electron. Dev. 55, 1771 (2008)CrossRefADSGoogle Scholar
  23. Zhang H. et al.: Measurement of polarization charge and conduction-band offset at InGaN/GaN heterojunction interfaces. Appl. Phys. Lett. 84, 4644–4646 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.NUSOD Institute LLCNewarkUSA
  2. 2.Crosslight Software Inc.BurnabyCanada

Personalised recommendations