Optical and Quantum Electronics

, Volume 41, Issue 11–13, pp 921–932 | Cite as

On open boundary conditions for quantum cascade structures

  • G. MilovanovicEmail author
  • O. Baumgartner
  • H. Kosina


We present a study of tunneling current and an investigation of the optical gain of \({{\rm GaAs/Al}_{x_c}{\rm Ga}_{1-x_c}{\rm As}}\) quantum cascade lasers. Current carrying states are obtained by assuming Robin boundary conditions. Our simulation results show that this approach gives a very good agreement with other calculations using the Tsu–Esaki model and with simulations based on nonequilibrium Green’s functions. By incorporating this method into optical gain calculations we establish good agreement with experimental results. Finally, the convergence of the solution of the Robin problem to the solution of the Dirichlet problem, as the energy tends to infinity, is investigated.


Quantum cascade laser Robin boundary condition Opticalgain current carrying state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdallah N.B., Degond P., Markowich P.A.: On a one-dimensional Schrödinger-Poisson scattering model. ZAMP 48, 135 (1997)zbMATHCrossRefADSGoogle Scholar
  2. Aspnes D.E.: GaAs lower conduction-band minima: ordering and properties. Phys. Rev. B 14, 5331 (1976)CrossRefADSGoogle Scholar
  3. Barbieri S., Alton J., Beere H.E., Fowler J., Linfield E.H., Ritchie D.A.: 2.9 THz quantum cascade lasers operating up to 70 K in continuous wave. Appl. Phys. Lett. 85, 1674 (2004)CrossRefADSGoogle Scholar
  4. Bondurant J.D., Fulling S.A.: The Dirichlet-to-Robin transform. J. Phys. A. Math. Gen. 38, 1505 (2005)zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. Chang W.S.C.: Principles of Lasers and Optics. Cambridge University Press, Cambridge (2002)Google Scholar
  6. Cheung C.Y.L., Rees P., Shore K.A., Pierce I.: Self-consistent optical gain and threshold current calculations for near infrared intersubband semiconductor lasers. J. Mod. Optics 47, 1857 (2000)ADSGoogle Scholar
  7. Coles R.A., Abram R.A., Brand S., Burt M.G.: Dipole matrix elements and the nature of charge oscillation under coherent interband excitation in quantum wells. Phys. Rev. B 60, 13–306 (1999)CrossRefGoogle Scholar
  8. Esaki L., Tsu R.: Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61 (1970)CrossRefGoogle Scholar
  9. Gelmont B., Gorfinkel V.B., Luryi S.: Theory of the spectral line shape and gain in quantum wells with intersubband transitions. Appl. Phys. Lett. 68, 2171 (1996)CrossRefADSGoogle Scholar
  10. Gmachl C., Capasso F., Sivco D.L., Cho A.Y.: Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64, 1533 (2001)CrossRefADSGoogle Scholar
  11. Gorfinkel V.B., Luryi S., Gelmont B.: Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations. IEEE J. Quant. Electron 32, 1995 (1996)CrossRefADSGoogle Scholar
  12. Harrison P.: The nature of the electron distribution functions in quantum cascade lasers. Appl. Phys. Lett. 75, 2800 (1999)CrossRefADSGoogle Scholar
  13. Kaiser H.C., Neidhardt H., Rehberg J.: Density and current of a dissipative Schrödinger operator. J. Math. Phys. 43, 5325 (2002)zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. Kazarinov R.F., Suris R.A.: Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 5, 707 (1971)Google Scholar
  15. Kröll J., Darmo J., Dhillon S.S., Marcadet X., Calligaro M., Sirtori C., Unterrainer K.: Phase-resolved measurements of stimulated emission in a laser. Nature 449, 698 (2007)CrossRefADSGoogle Scholar
  16. Lee S.C., Banit F., Woerner M., Wacker A.: Quantum mechanical wavepacket transport in quantum cascade laser structures. Phys. Rev. B 73, 245–320 (2006)Google Scholar
  17. Mendez B., Dominguez-Adame F.: Numerical study of electron tunneling through heterostructures. Am. J. Phys. 62, 143 (1994)CrossRefADSGoogle Scholar
  18. Panchadhyayee, P., Biswas, R., Khan, A., Mahapatra, P.K.: The effect of quasi-periodicity on the resonant tunneling lifetimes of states in electrically biased semiconductor superlattices. J. Phys. Condens. Matter 20, 275, 243 (7 pp) (2008)Google Scholar
  19. Pozdeeva E., Schulze-Halberg A.: Trace formula for Green’s functions of effective mass Schrödinger equations and nth-order Darboux transformations. Int. J. Mod. Phys. A 23, 2635 (2008)zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. Sirtori C., Kruck P., Barbieri S., Collot P., Nagle J., Beck M., Faist J., Oesterle U.: GaAs/AlxGa1−xAs quantum cascade lasers. Appl. Phys. Lett. 73, 3486 (1998)CrossRefADSGoogle Scholar
  21. Willenberg H., Doehler G.H., Faist J.: Intersubband gain in a Bloch oscillator and quantum cascade laser. Phys. Rev. B 67, 85–315 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Institute for Microelectronics, TU WienWienAustria

Personalised recommendations