Optical and Quantum Electronics

, Volume 41, Issue 9, pp 689–697 | Cite as

A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector

  • Young Mo Kang
  • Amir Arbabi
  • Lynford L. Goddard


We present analysis of the distributed Bragg reflector in a microring resonator (DBR-MRR) structure. With appropriate design parameters, the device can closely reproduce the reflectance spectrum of a sampled grating distributed Bragg reflector (SGDBR). By inserting the grating inside a microring resonator, the structure is much more compact than an SGDBR, suppresses side mode ripples near each peak, and offers better control over its full width half maximum (FWHM). The device is expected to have applications in compact tunable lasers and other planar photonic devices.


Microring resonator (MRR) Distributed Bragg reflector (DBR) Sampled grating distributed Bragg reflector (SGDBR) Grating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chremmos I., Uzunoglu N.: Reflective properties of double-ring resonator system coupled to a waveguide. IEEE Photon. Tech. Lett. 17, 2110–2112 (2005)CrossRefADSGoogle Scholar
  2. Chung Y., Kim D., Dagli N.: Reflection properties of coupled-ring reflectors. J. Lightwave Tech. 24, 1865–1874 (2006)CrossRefADSGoogle Scholar
  3. Grover, R.: Indium phosphide-based optical micro-ring resonators. Ph.D. thesis, University of Maryland, College Park, MD, (2003)Google Scholar
  4. (2003). Accessed 05 Oct. (2009)
  5. Ishii H., Tanobe H., Kano F., Tohmori Y., Kondo Y., Yoshikuni Y.: Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers. IEEE J. Quantum. Electron. 32, 433–441 (1996)CrossRefADSGoogle Scholar
  6. Ishii H., Kano F., Yoshikuni Y., Yasaka H.: Mode stabilization method for superstructure-grating DBR lasers. J. Lightwave Tech. 16, 433–442 (1998)CrossRefADSGoogle Scholar
  7. Jayaraman C., Chuang Z.-M., Coldren L.A.: Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings. IEEE J. Quantum Electron. 29, 1824–1834 (1993)CrossRefADSGoogle Scholar
  8. Kang, Y.M., Goddard, L.L.: Semi-analytical modeling of microring resonators with distributed Bragg reflectors. Numerical Simulation of Optoelectronic Devices, 2009. NUSOD’ 09. International Conference on, 123–124 (2009)Google Scholar
  9. Little B.E., Chu S.T., Haus H.A.: Second-order filtering and sensing with partially coupled traveling waves in a single resonator. Opt. Lett. 23, 1570–1572 (1998)CrossRefADSGoogle Scholar
  10. Paloczi G.T., Scheuer J., Yariv A.: Compact microring-based wavelength-selective inline optical reflector. IEEE Photon. Tech. Lett. 17, 390–392 (2005)CrossRefADSGoogle Scholar
  11. Scheuer J., Paloczi G.T., Yariv A.: All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators. Appl. Phys. Lett. 87, 251102 (2005)CrossRefADSGoogle Scholar
  12. Van V.: Dual-mode microring reflection filters. J. Lightwave Tech. 25, 3142–3150 (2007)CrossRefADSGoogle Scholar
  13. Zhang Z., Dainese M., Wosinski L., Qiu M.: Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling. Opt. Exp. 16, 4621–4630 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Young Mo Kang
    • 1
  • Amir Arbabi
    • 1
  • Lynford L. Goddard
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations