Advertisement

Optical and Quantum Electronics

, Volume 41, Issue 2, pp 121–130 | Cite as

Numerical analysis of the stability of optical bullets (2 + 1) in a planar waveguide with cubic–quintic nonlinearity

  • W. B. Fraga
  • J. W. M. Menezes
  • C. S. Sobrinho
  • A. C. Ferreira
  • G. F. Guimarães
  • A. W. LimaJr.
  • A. F. G. F. Filho
  • H. H. B. Rocha
  • K. D. A. Sabóia
  • F. T. Lima
  • J. M. S. Filho
  • A. S. B. SombraEmail author
Article

Abstract

In this paper, we have presented a numerical analysis of the stability of optical bullets (2 + 1), or spatiotemporal solitons (2 + 1), in a planar waveguide with cubic–quintic nonlinearity. The optical spatiotemporal solitons are the result of the balance between the nonlinear parameters, of dispersion (dispersion length, L D) and diffraction (diffraction length, L d) with temporal and spatial auto-focusing behavior, respectively. With the objective of ensure the stability and preventing the collapse or the spreading of pulses, in this study we explore the cubic–quintic nonlinearity with the optical fields coupled by cross-phase modulation and considering several values for the non linear parameter α We have shown the existence of stable light bullets in planar waveguide with cubic–quintic nonlinearity through the study of spatiotemporal collisions of the light bullets.

Keywords

Spatiotemporal solitons Optical bullets Cubic–quintic nonlinearity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, Boston (2001a)Google Scholar
  2. Agrawal G.P.: Applications of Nonlinear Fiber Optics, 1st edn. Academic Press, Boston (2001b)Google Scholar
  3. Akhmediev N., Soto-Crespo J.M.: Generation of a train of three-dimensional optical solitons in a self-focusing médium. Phys. Rev. A 47, 1358–1364 (1993)CrossRefADSGoogle Scholar
  4. Akhmediev N.N., Ankiewicz A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997)Google Scholar
  5. Aleksić, N.B., Skarka, V., Timotijević, D.V., Gauthier, D.: Self-stabilized spatiotemporal dynamics of dissipative light bullets generated from inputs without spherical symmetry in three-dimensional Ginzburg-Landau systems. Phys. Rev. A, 75(6), (2007) (article no. 061802)Google Scholar
  6. Anderson D.: Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27, 3135–3145 (1983)CrossRefADSGoogle Scholar
  7. Bergé L.: Self-focusing dynamics of nonlinear waves in media with parabolic-type inhomogeneities. Phys. Plasmas 4, 1227 (1997)CrossRefADSGoogle Scholar
  8. Chen, S.H., Dudley, J.M.: Spatiotemporal nonlinear optical self-similarity in three dimensions. Phys. Rev. Lett., 102(23), (2009) (article no. 233903)Google Scholar
  9. Chiao R.Y., Garmire E., Townes C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964)CrossRefADSGoogle Scholar
  10. Desyatnikov A., Maimistov A., Malomed B.: Three-dimensional spinning solitons in dispersive media with the cubic–quintic nonlinearity. Phys. Rev. E 61, 3107–3113 (2000)CrossRefADSGoogle Scholar
  11. Enns R.H., Rangnekar S.S.: Bistable spheroidal optical solitons. Phys. Rev. A 45, 3354–3357 (1992)CrossRefADSGoogle Scholar
  12. Fong C.Y., Shen Y.R.: Theoretical Studies on dispersion of nonlinear optical susceptibilites in GaAs, InAs, and InSb. Phys. Rev. B. 12(6), 2325–2355 (1975)CrossRefADSGoogle Scholar
  13. Gorbach, A.V., Skryabin, D.V.: Spatial solitons in periodic nanostructures. Phys. Rev. A, 79(5), (2009) (article no. 053812)Google Scholar
  14. Hayata K., Koshiba M.: Multidimensional solitons in quadratic nonlinear media. Phys. Rev. Lett. 71, 3275–3278 (1993)CrossRefADSGoogle Scholar
  15. Kanashov A.A., Rubenchik A.M.: On diffraction and dispersion effect on three wave interaction. Physica D 4, 122–134 (1981)CrossRefADSGoogle Scholar
  16. Kelley P.: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965)CrossRefADSGoogle Scholar
  17. Kivshar Y.S., Agrawal G.P.: Optical Solitons, 1st edn. Academic Press, Boston (2003a)Google Scholar
  18. Kivshar Y.S., Agrawal G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003b)Google Scholar
  19. Kolokolo A.A., Skrotski G.V.: Self-compression of spherically symmetric pulses in a nonlinear medium. Optika, I Spektroskopiya 35(5), 898–901 (1973)Google Scholar
  20. Liu X., Qian L.J., Wise F.W.: Generation of optical spatiotemporal solitons. Phys. Rev. Lett. 82, 4631–4634 (1999)CrossRefADSGoogle Scholar
  21. Malomed B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)Google Scholar
  22. Malomed B.A., Drummond P., He H., Berntson A., Anderson D., Lisak M.: Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity. Phys. Rev. E 56, 4725–4735 (1997)CrossRefADSGoogle Scholar
  23. Malomed B.A., Mihalache D., Wise F., Torner L.: Spatiotemporal optical solitons. J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005)CrossRefGoogle Scholar
  24. Marburger J.H.: Self-focusing: theory. Prog. Quantum Electron. 4, 35–110 (1975)CrossRefADSGoogle Scholar
  25. McLeod R., Wagner K., Blair S.: (3 + 1)-dimensional optical soliton dragging logic. Phys. Rev. A 52, 3254–3278 (1995)CrossRefADSGoogle Scholar
  26. Nehmetallah G., Banerjee P.P.: Numerical modeling of spatio-temporal solitons using an adaptive spherical Fourier Bessel split-step method. Opt. Commun. 257, 197–205 (2006)CrossRefADSGoogle Scholar
  27. Rasmussen J.J., Rypdal K.: Blow-up in nonlinear Schroedinger equations. Phys. Scr. 33(6), 481–497 (1986)zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. Sakaguchi, H,Malomed, B.A.: Channel-guided light bullets. Phys. Rev. A, 75(6), (2007) (article no. 063825)Google Scholar
  29. Sombra A.S.B.: Bistable pulse collisions of the cubic–quintic nonlinear Schrodinger equation. Opt. Commun. 94, 92–98 (1992)CrossRefADSGoogle Scholar
  30. Stegeman G.I., Christodoulides D.N., Segev M.: Optical spatial solitons: historical perspectives. IEEE J. Sel. Top. Quantum Electron. 6, 1419–1427 (2000)CrossRefGoogle Scholar
  31. Sukhorukov, A.A., Kivshar, Y.S.: Slow-light optical bullets in arrays of nonlinear Bragg-Grating waveguides. Phys. Rev. Lett., 97(23), (2006) (article no. 233901)Google Scholar
  32. Towers I., Malomed B.A.: Stable (2 + 1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity. J. Opt. Soc. Am. B 19, 537–543 (2002)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • W. B. Fraga
    • 1
    • 3
  • J. W. M. Menezes
    • 2
    • 3
  • C. S. Sobrinho
    • 1
    • 3
  • A. C. Ferreira
    • 1
    • 3
  • G. F. Guimarães
    • 1
    • 3
  • A. W. LimaJr.
    • 1
    • 3
  • A. F. G. F. Filho
    • 1
    • 3
  • H. H. B. Rocha
    • 1
    • 3
  • K. D. A. Sabóia
    • 1
    • 3
  • F. T. Lima
    • 1
    • 3
  • J. M. S. Filho
    • 1
    • 3
  • A. S. B. Sombra
    • 1
    • 2
    • 3
    Email author
  1. 1.Departamento de Engenharia de Teleinformática (DETI), Centro de TecnologiaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Laboratório de Telecomunicações e Ciências e Engenharia de Materiais (LOCEM)Universidade Federal do CearáFortalezaBrazil

Personalised recommendations