Optical and Quantum Electronics

, Volume 41, Issue 1, pp 55–68 | Cite as

Design of an optical sensor array for hydrocarbon monitoring

  • F. Prudenzano
  • L. Mescia
  • L. A. Allegretti
  • G. Calò
  • A. D’Orazio
  • M. De Sario
  • T. Palmisano
  • V. Petruzzelli
Article

Abstract

Evanescent field optical sensors are accurately designed for hydrocarbon monitoring in water. Various kinds of waveguide sensors are optimized by considering a polydimethylsiloxane polymeric overlay as sensor region. The simulation results suggest that the selection of a suitable waveguide cross section can enhance the sensor performance. In particular, the hollow waveguide sensor exhibits very intriguing performance, the absorbance being quite linear with respect to the contaminant concentration. For the toluene pollution the absorbance exhibits a slope \({S_{\rm TE}^{A} =2.52 \times 10^{-2}\,{\rm ppm}^{-1}}\) for a waveguide reference length L = 1.18 mm. In order to simultaneously detect different pollutants in water such as toluene, benzene, chlorobenzene and ethilbenzene, an array of four miniaturized hollow waveguide sensors is designed.

Keywords

Optical sensor Sensor array Integrated optics Hydrocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber J.P., Conkey D.B., Lee J.R., Hubbard N.B., Howell L.L., Schmidt H., Hawkins A.R.: Fabrication of hollow waveguides with sacrificial aluminum cores. IEEE Photon. Technol. Lett. 17, 363–365 (2005)CrossRefADSGoogle Scholar
  2. Barber J.P., Lunt E.J., George Z.A., Yin D., Schmidt H., Hawkins A.R.: Integrated hollow waveguides with arch-shaped cores. IEEE Photon. Technol. Lett. 18, 28–30 (2006)CrossRefADSGoogle Scholar
  3. Beregovski Y., Hennig O., Fallahi M., Guzman F., Clemens R., Mendes S., Peyghambarian N.: Design and characteristics of DBR-laser-based environmental sensors. Sens. Actuators B 53, 116–124 (1998)CrossRefGoogle Scholar
  4. Bernini R., Campopiano S., Zeni L., Sarro P.M.: ARROW optical waveguides based sensors. Sens. Actuators B 100, 143–146 (2004)CrossRefGoogle Scholar
  5. Buerck J., Roth S., Kraemer K., Scholz M., Klaas N.J.: Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater. Hazard. Mater. 83, 11–28 (2001)CrossRefGoogle Scholar
  6. D’Orazio A., De Sario M., Giasi C.I., Mescia L., Petruzzelli V., Prudenzano F.: Design of planar optic sensors for hydrocarbon detection. Opt. Quantum Electron. 36, 507–526 (2004)CrossRefGoogle Scholar
  7. D’Orazio A., De Sario M., Petruzzelli V., Prudenzano F.: Leaky mode propagation in planar multilayer birefringent waveguides: longitudinal dielectric tensor configuration. IEEE J. Light. Technol. 12, 453–462 (1994)CrossRefADSGoogle Scholar
  8. Fleming J.W.: Dispersion in GeO2–SiO2 glasses. Appl. Opt. 23, 4486–4493 (1984)CrossRefADSGoogle Scholar
  9. Hong J., Kim K.H., Shin J.H., Huh C., Sung G.Y.: Prediction of the limit of detection of an optical resonant reflection biosensor. Opt. Express 5, 8972–8978 (2007)CrossRefADSGoogle Scholar
  10. Hua P., Hole J.P., Wilkinson J.S., Proll G., Tschmelak J., Gauglitz G., Jackson M.A., Nudd R., Griffith H.M.T., Abuknesha R.A., Kaiser J., Kraemmer P.: Integrated optical fluorescence multisensor for water pollution. Opt. Express 13, 1124–1130 (2005)CrossRefADSGoogle Scholar
  11. Jones Y.K., Li Z., Johnson M.M., Josse F., Hossenlopp J.M.: ATR-FTIR spectroscopic analysis of sorption of aqueous analytes into polymer coatings used with guided SH-SAW sensors. IEEE Sens. J. 5, 1175–1184 (2005)CrossRefGoogle Scholar
  12. Kinrot N., Nathan M.J.: Investigation of a periodically segmented waveguide Fabry-Pe/spl acute/rot interferometer for use as a chemical/biosensor. Light. Technol. 24, 2139–2145 (2006)CrossRefGoogle Scholar
  13. Krioukov E., Greve J., Otto C.: Performance of integrated optical microcavities for refractive index and fluorescence sensing. Sens. Actuators B 90, 58–67 (2003)CrossRefGoogle Scholar
  14. Lieberzeit P.A., Dickert F.L.: Sensor technology and its application in environmental analysis. Anal. Bioanal. Chem. 387, 237–247 (2007)CrossRefGoogle Scholar
  15. Lo S.S., Chiu H.K., Chen C.C., Hsu S.C., Liu C.Y.: Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent. IEEE Photon. Technol. Lett. 17, 2592–2594 (2005)CrossRefADSGoogle Scholar
  16. Manoli E., Samara C.: Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. Trends Analyt. Chem. 18, 417–428 (1999)CrossRefGoogle Scholar
  17. Nardi L.: Determination of siloxane–water partition coefficients by capillary extraction—high-resolution gas chromatography study of aromatic solvents. J. Chromatogr. A 985, 39–45 (2003)CrossRefGoogle Scholar
  18. Plowman T.E., Reichert W.M., Peters C.R., Wang H.K., Christensen D.A., Herron J.N.: Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor. Biosens. Biolelectron. 11, 149–160 (1996)CrossRefGoogle Scholar
  19. Prieto F., Sepulveda B., Calle A., Llobera A., Domìnguez C., Lechug L.M.: Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications. Sens. Actuators B 92, 151–158 (2003)CrossRefGoogle Scholar
  20. Prudenzano F., D’Orazio A., De Sario M., Petruzzelli V.: Comparison between the performance of Ti:LiNbO3 and H:LiNbO3 rotated optical axis waveguides—summary. J. Electromagn. Waves Appl. 11, 547–559 (1997)CrossRefGoogle Scholar
  21. Schipper E.F., Brugman A.M., Dominguez C., Lechuga L.M., Kooyman R.P.H., Greve J.: The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology. Sens. Actuators B 40, 147–153 (1997)CrossRefGoogle Scholar
  22. Schwotzer G., Latka I., Lehmann H., Willsch R.: Optical sensing of hydrocarbons in air or in water using UV absorption in the evanescent field of fibers. Sens. Actuators B 38, 150–153 (1997)CrossRefGoogle Scholar
  23. Smith R.C., Baker K.S.: Optical properties of the clearest natural. Waters. Appl. Opt. 20, 177–184 (1981)CrossRefADSGoogle Scholar
  24. Stewart G., Norris J., Clark D.F., Culshaw B.: Evanescent-wave chemical sensors—a theoretical evaluation. Int. J. Optoelectron. 6, 227–238 (1991)Google Scholar
  25. Sun R., Dong P., Ning-ning F., Ching-yin H., Michel J., Lipson M., Kimerling L.: Horizontal single and multiple slot waveguides: optical transmission at λ =  1,550 nm. Opt. Express 15, 17967–17972 (2007)CrossRefADSGoogle Scholar
  26. Suzuki A., Kondoh J., Matsui Y., Shiokawa S., Suzuki K.: Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes. Sens. Actuators B 106, 383–387 (2005)CrossRefGoogle Scholar
  27. Vigano C., Ruysschaert J.M., Goormaghtigh E.: Sensor applications of attenuated total reflection infrared spectroscopy. Talanta 65, 1132–1142 (2005)CrossRefGoogle Scholar
  28. Weissman Z., Brand E., Ruschin S., Goldberg D.: Segmented waveguides and their applications for biosensing. SPIE 3936, 284–292 (2000)CrossRefADSGoogle Scholar
  29. Zimmerman B., Burck J., Ache H.J.: Studies on siloxane polymers for NIR-evanescent wave absorbance sensors. Sens. Actuators B 41, 45–54 (1997)CrossRefGoogle Scholar
  30. Zourob M., Goddard N.J.: Metal clad leaky waveguides for chemical and biosensing applications. Biosens. Bioelectron. 20, 1718–1727 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • F. Prudenzano
    • 1
  • L. Mescia
    • 2
  • L. A. Allegretti
    • 1
  • G. Calò
    • 2
  • A. D’Orazio
    • 2
  • M. De Sario
    • 2
  • T. Palmisano
    • 1
  • V. Petruzzelli
    • 2
  1. 1.Dipartimento di Ingegneria dell’Ambiente e per lo Sviluppo Sostenibile (DIASS)Politecnico di BariTarantoItaly
  2. 2.Dipartimento di Elettrotecnica ed Elettronica (DEE)Politecnico di BariBariItaly

Personalised recommendations