Optical and Quantum Electronics

, Volume 41, Issue 1, pp 11–16

Laterally-corrugated ridge-waveguide distributed feedback lasers at 980 nm

  • Antti Laakso
  • Mihail Dumitrescu
  • Jukka Viheriälä
  • Jarkko Telkkälä
  • Juha Tommila
  • Kimmo Haring
  • Tomi Leinonen
  • Sanna Ranta
  • Markus Pessa
Article

Abstract

The paper presents a simulation-based analysis of laterally-corrugated ridge-waveguide distributed feedback semiconductor lasers emitting at 980 nm. The simulations were performed using software developed in-house and the PICS3D software package from Crosslight Software Inc. The effects of the corrugation geometry, phase-shift section, and mirror reflectivities on single longitudinal mode operation are discussed. The lasers, designed along the guidelines derived from the simulation results, were fabricated by using molecular beam epitaxy for wafer growth and low-cost nano-imprint lithography. They exhibited stable single-mode operation with up to 50 dB side-mode suppression ratio.

Keywords

Distributed feedback Facet coatings Phase-shift Side-mode suppression ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiba S., Utaka K., Sakai K., Matsushima Y.: Distributed feedback InGaAsP/InP lasers with window region emitting at 1.5 μm range. IEEE J. Quantum Electron 19, 1052–1056 (1983)CrossRefADSGoogle Scholar
  2. Henry C.H.: Performance of distributed feedback lasers designed to favor the energy gap mode. IEEE J. Quantum Electron 21, 1913–1918 (1985)CrossRefADSGoogle Scholar
  3. Jang S.J., Yu J.S., Lee Y.T.: Laterally coupled DFB lasers with self-aligned metal surface grating by holographic lithography. IEEE Photon. Tech. Lett. 20, 514–516 (2008)CrossRefADSGoogle Scholar
  4. Kinoshita J., Matsumoto K.: Yield analysis of SML DFB lasers with an axially-flattened internal field. IEEE J. Quantum Electron 25, 1324–1332 (1989)CrossRefADSGoogle Scholar
  5. Kogelnik H., Shank C.V.: Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972)CrossRefADSGoogle Scholar
  6. Laakso A., Dumitrescu M., Viheriälä J., Karinen J., Suominen M., Pessa M.: Optical modeling of laterally-corrugated ridge-waveguide gratings. Opt. Quant. Electron 40, 907–920 (2009)CrossRefGoogle Scholar
  7. Martin R.D., Forouhar S., Keo S., Lang R.J., Hunsperger R.G., Tiberio R.C., Chapman P.F.: CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode. IEEE Photon. Tech. Lett. 7, 244–246 (1995)CrossRefADSGoogle Scholar
  8. Miller L.M., Verdeyen J.T., Coleman J.J., Bryan R.P., Alwan J.J., Beernink K.J., Hughes J.S., Cockerill T.M.: A distributed feedback ridge waveguide quantum well heterostructure laser. IEEE Photon. Tech. Lett. 3, 6–8 (1991)CrossRefADSGoogle Scholar
  9. Millett R.R, Hinzer K., Hall T.J., Schriemer H.: Simulation analysis of higher order laterally-coupled distributed feedback lasers. IEEE J. Quantum Electron 44, 1145–1151 (2008)CrossRefGoogle Scholar
  10. Müller M., Klopf F., Kamp M., Reithmaier J.P., Forchel A.: Wide range tunable laterally coupled distributed-feedback lasers based on InGaAs-GaAs quantum dots. IEEE Photon. Tech. Lett. 14, 1246–1248 (2002)CrossRefADSGoogle Scholar
  11. Pics3D Software Information.: www.crosslight.com (2009)
  12. Schreiner R., Nägele P., Körbl M., Gröning A., Gentner J.L., Schweizer H.: Monolithically integrated tunable laterally coupled distributed-feedback lasers. IEEE Photon. Tech. Lett. 13, 1277–1279 (2001)CrossRefADSGoogle Scholar
  13. Soda H., Kotaki Y., Sudo H., Ishikawa H., Yamakoshi S., Imai H.: Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers. IEEE J. Quantum Electron 23, 804–814 (1987)CrossRefADSGoogle Scholar
  14. Utaka K., Akiba S., Sakai K., Matsushima Y.: Analysis of quarter-wave-shifted DFB laser. Electron Lett. 20, 326–327 (1984)CrossRefGoogle Scholar
  15. Viheriälä J., Tommila J., Leinonen T., Dumitrescu M., Toikkanen L., Niemi T., Pessa M.: Applications of UV-nanoimprint soft stamps in fabrication of single-frequency lasers. Microelectron Eng. 86, 321–324 (2009)CrossRefGoogle Scholar
  16. Yeh P.: Optical Waves in Layered Media. Wiley, Canada (1988)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Antti Laakso
    • 1
  • Mihail Dumitrescu
    • 1
  • Jukka Viheriälä
    • 1
  • Jarkko Telkkälä
    • 1
  • Juha Tommila
    • 1
  • Kimmo Haring
    • 1
  • Tomi Leinonen
    • 1
  • Sanna Ranta
    • 1
  • Markus Pessa
    • 1
  1. 1.ORC, Tampere University of TechnologyTampereFinland

Personalised recommendations