Optical and Quantum Electronics

, Volume 40, Issue 14–15, pp 1103–1109 | Cite as

Mode transitions in distributed-feedback tapered master-oscillator power-amplifier: theory and experiments

  • Mindaugas Radziunas
  • Vasile Z. Tronciu
  • Uwe Bandelow
  • Mark Lichtner
  • Martin Spreemann
  • Hans Wenzel
Article

Abstract

Theoretical and experimental investigations have been carried out to study the spectral and spatial behavior of monolithically integrated distributed-feedback tapered master-oscillators power-amplifiers emitting around 973 nm. Introduction of self and cross heating effects and the analysis of longitudinal optical modes allows us to explain experimental results. The results show a good qualitative agreement between measured and calculated characteristics.

Keywords

Master oscillator Power amplifier Taper Longitudinal mode analysis 

PACS

42.55.Px 42.65.Sf 

Mathematics Subject Classification (2000)

35Q60 37L15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balsamo S. et al.: Dynamic beam propagation method for flared semiconductor power amplifiers. IEEE. J. Quantum. Electron. 2(2), 378–384 (1996)CrossRefGoogle Scholar
  2. Bandelow U. et al.: Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers. IEEE. J. Quantum. Electron. 37(2), 183–188 (2001)CrossRefADSGoogle Scholar
  3. Bauer S. et al.: Nonlinear dynamics of semiconductor lasers with active optical feedback. Phys. Rev. E 69(1), 016206–016215 (2004)CrossRefADSGoogle Scholar
  4. Egan A. et al.: Dynamic instabilities in master oscillator power amplifier semiconductor lasers. IEEE. J. Quantum. Electron. 34(1), 166–170 (1998)CrossRefADSGoogle Scholar
  5. Lammert R. et al.: 980-nm master oscillator power amplifiers with non-absorbing mirrors. IEEE. Phot. Techn. Lett. 11(9), 1099–1101 (1999)CrossRefADSGoogle Scholar
  6. O’Brien S. et al.: 2.2-W continuous wave diffraction-limited monolithically integrated master oscillator power amplifier at 854 nm. IEEE. Phot. Techn. Lett. 9(4), 440–442 (1997)CrossRefADSMathSciNetGoogle Scholar
  7. Radziunas M., Wünsche H.-J.: Multisection lasers: longitudinal modes and their dynamics. In: Piprek, J. (eds) Optoelectronic devices—advanced simulation and analysis, pp. 121–150. Springer, New York (2005)Google Scholar
  8. Rehberg J. et al.: Spectral properties of a system describing fast pulsating DFB lasers. Z. angew. Math. Mech. 77(1), 75–77 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. Spreemann M. et al.: Measurement and simulation of distributed-feedback tapered master-oscillators power-amplifiers. IEEE. J. Quantum. Electron. 45(6), 609–616 (2009)CrossRefADSGoogle Scholar
  10. Tager A., Petermann K.: High-frequency oscillations and self-mode locking in short external-cavity laser diodes. IEEE. J. Quantum. Electron. 30(7), 1553–1561 (1994)CrossRefADSGoogle Scholar
  11. Wenzel H. et al.: 10-W continuous-wave monolithically integrated master-oscillator power-amplifier. Electron. Lett. 43(3), 160–161 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Mindaugas Radziunas
    • 1
  • Vasile Z. Tronciu
    • 1
  • Uwe Bandelow
    • 1
  • Mark Lichtner
    • 1
  • Martin Spreemann
    • 2
  • Hans Wenzel
    • 2
  1. 1.Weierstraß-Institut für Angewandte Analysis und StochastikBerlinGermany
  2. 2.Ferdinand Braun Institut für HöchstfrequenztechnikBerlinGermany

Personalised recommendations