Optical and Quantum Electronics

, Volume 40, Issue 14–15, pp 1239–1245 | Cite as

Effects of grating order and tooth rounding in laterally coupled distributed feedback lasers

  • Ronald Millett
  • Henry Schriemer
  • Trevor Hall
  • Karin Hinzer
Article
  • 81 Downloads

Abstract

We demonstrate the results of an analysis of laterally coupled distributed feedback (LC-DFB) lasers with higher order gratings, including the effects of radiating partial waves. For a given fabrication resolution, first-order gratings, if they can be reliably manufactured, always provide the strongest coupling. However, at resolutions requiring higher order gratings, if duty cycles of >0.5 are used, the lowest grating order is not always the one with the strongest coupling. An analysis of the rounding of the grating teeth showed that the required threshold gain was increased by nearly 20% when the rectangular grating was rounded in fabrication.

Keywords

Distributed feedback lasers Coupled-mode theory Higher order gratings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen N., Watanabe Y., Takei K., Chikuma K.: InGaAsP/InP laterally-coupled distributed feedback lasers. Jpn. J. Appl. Phys. 39, 1508–1511 (2000). doi:10.1143/JJAP.39.1508 CrossRefADSGoogle Scholar
  2. Choi W.-Y., Chen J.C., Fonstad C.G.: Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers. Jpn. J. Appl. Phys. 35, 4654–4659 (1996). doi:10.1143/JJAP.35.4654 CrossRefADSGoogle Scholar
  3. Das P.K., Uemukai M., Suhara T.: InGaAs/AlGaAs quantum well laterally-coupled distributed feedback laser. Jpn. J. Appl. Phys. 43, 2549–2550 (2004). doi:10.1143/JJAP.43.2549 CrossRefADSGoogle Scholar
  4. Fernandes C.F.: Single phase-shifted dfb laser diodes. Microw. Opt. Technol. Lett. 17, 398–402 (1998)CrossRefGoogle Scholar
  5. Kinoshita J., Matsumoto K.: Yield analysis of SLM DFB lasers with an axially-flattened internal field. IEEE J. Quantum Electron 25, 1324–1332 (1989)CrossRefADSGoogle Scholar
  6. Millett, R., Hinzer, K., Hall, T., Schriemer, H.: Fabrication-tolerant higher order laterally-coupled distributed feedback lasers. Photonics North, Montreal, PQ, 2–4 June 2008Google Scholar
  7. Millett R., Hinzer K., Hall T., Schriemer H.: Simulation analysis of higher order laterally-coupled distributed feedback lasers. IEEE J. Quantum Electron 44, 1145–1151 (2008)CrossRefGoogle Scholar
  8. Muller M., Klopf F., Kamp M., Reithmaier J.P., Forchel A.: Wide range tunable laterally coupled distributed-feedback lasers based on InGaAs-GaAs quantum dots. IEEE Photon. Technol. Lett. 14, 1246–1248 (2002). doi:10.1109/LPT.2002.801103 CrossRefADSGoogle Scholar
  9. Pozzi F., DeLa Rue R.M., Sorel M.: Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser. IEEE Photon. Technol. Lett. 18, 2563–2565 (2006). doi:10.1109/LPT.2006.887205 CrossRefADSGoogle Scholar
  10. Reid, B., et al.: Narrow linewidth and high power distributed feedback lasers fabricated without a regrowth step. ECOC 2003Google Scholar
  11. Streifer W., Scifres D.R., Burnham R.D.: Coupled wave analysis of DFB and DBR lasers. IEEE J. Quantum Electron QE-13, 134–141 (1977)CrossRefADSGoogle Scholar
  12. Viheriälä, J., et al.: Longitudinally single mode laser-diode fabricated with nanoimprint lithography. CLEO 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Ronald Millett
    • 1
  • Henry Schriemer
    • 1
  • Trevor Hall
    • 1
  • Karin Hinzer
    • 1
  1. 1.Centre for Research in PhotonicsUniversity of OttawaOttawaCanada

Personalised recommendations