Optical and Quantum Electronics

, Volume 40, Issue 11–12, pp 907–920 | Cite as

Optical modeling of laterally-corrugated ridge-waveguide gratings

  • Antti Laakso
  • Mihail Dumitrescu
  • Jukka Viheriälä
  • Jukka Karinen
  • Mikko Suominen
  • Markus Pessa
Article

Abstract

The paper presents some model improvements for the optical simulation of laterally-corrugated ridge-waveguide distributed feedback lasers. Simulation results are discussed and design principles for achieving single-longitudinal-mode operation are outlined. The effects of the laterally-corrugated ridge geometry both on the coupling coefficient and on the Bragg wavelength of different transverse modes are presented. The improved modeling has been used to design 980 nm distributed feedback lasers with laterally-corrugated ridge-waveguide third-order gratings. The lasers fabricated using nanoimprint lithography exhibited single-mode operation with 50 dB side-mode suppression ratio.

Keywords

Coupling coefficient Distributed feedback Mode solver Ridge waveguide Single-mode operation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal G.P., Dutta N.K. (1993) Semiconductor Lasers. Van Nostrand Reinhold, New YorkGoogle Scholar
  2. Buus J. (1985) Mode selectivity in DFB lasers with cleaved facets. Electron. Lett. 21: 179–180. doi: 10.1049/el:19850126 CrossRefGoogle Scholar
  3. David K., Morthier G., Vankwikelberge P., Bates R.G., Wolf T., Borchert B. (1991) Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield. IEEE. J. Quantum Electron. 27: 1714–1723. doi: 10.1109/3.89938 CrossRefADSGoogle Scholar
  4. Henry C.H. (1985) Performance of distributed feedback lasers designed to favor the energy gap mode. IEEE. J. Quantum Electron. 21: 1913–1918. doi: 10.1109/JQE.1985.1072611 CrossRefADSGoogle Scholar
  5. Kinoshita J., Matsumoto K. (1989) Yield analysis of SML DFB lasers with an axially-flattened internal field. IEEE. J. Quantum Electron. 25: 1324–1332. doi: 10.1109/3.29264 CrossRefADSGoogle Scholar
  6. Kogelnik H., Shank C.V. (1972) Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43: 2327–2335. doi: 10.1063/1.1661499 CrossRefADSGoogle Scholar
  7. Laakso, A. Dumitrescu, M., Pietilä, P., Suominen, M., Pessa, M.: Optimization studies of single-transverse-mode 980 nm ridge-waveguide lasers. Submitted to OWTNM Special Issue of Opt. Quantum Electron. (2008). doi: 10.1007/sl1082-009-9280-7
  8. Martin R.D., Forouhar S., Keo S., Lang R.J., Hunsperger R.G., Tiberio R.C., Chapman P.F. (1995) CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode. IEEE. Photon. Technol. Lett. 7: 244–247. doi: 10.1109/68.372734 CrossRefADSGoogle Scholar
  9. Miller L.M., Verdeyen J.T., Coleman J.J., Bryan R.P., Alwan J.J., Beernink K.J., Hughes J.S., Cockerill T.M. (1991) A distributed feedback ridge waveguide quantum well heterostructure laser. IEEE. Photon. Technol. Lett. 3: 6–8 doi: 10.1109/68.68030 CrossRefADSGoogle Scholar
  10. Millett R.R., Hinzer K., Hall T.J., Schriemer H. (2008) Simulation analysis of higher order laterally-coupled distributed feedback lasers. IEEE. J. Quantum Electron. 44: 1145–1151. doi: 10.1109/JQE.2008.2002089 CrossRefGoogle Scholar
  11. Müller, M., Klopf, F., Kamp, M., Reithmaier, J.P., Forchel, A.: Wide range tunable laterally coupled distributed-feedback lasers based on InGaAs-GaAs quantum dots. IEEE. Photon. Technol. Lett. 14, 1246–1248 (2002). doi: 10.1109/LPT.2002.801103 CrossRefADSGoogle Scholar
  12. Pics3D software information. www.crosslight.com (2009)
  13. Sakai K., Utaka K., Akiba S., Matsushima Y. (1982) 1.5 μm range InGaAsP/InP distributed feedback lasers. IEEE. J. Quantum Electron. 18: 1272–1278. doi: 10.1109/JQE.1982.1071682 CrossRefADSGoogle Scholar
  14. Schreiner R., Nägele P., Körbl M., Gröning A., Gentner J.L., Schweizer H. (2001) Monolithically integrated tunable laterally coupled distributed-feedback lasers. IEEE. Photon. Technol. Lett. 13: 1277–1279. doi: 10.1109/68.969880 CrossRefADSGoogle Scholar
  15. Soda H., Kotaki Y., Sudo H., Ishikawa H., Yamakoshi S., Imai H. (1987) Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers. IEEE. J. Quantum Electron. 23: 804–814. doi: 10.1109/JQE.1987.1073454 CrossRefADSGoogle Scholar
  16. Streifer W., Scifres D.R., Burnham R.D. (1975) Coupling coefficients for distributed feedback single- and double-heterostructure lasers. IEEE. J. Quantum Electron. 11: 867–873. doi: 10.1109/JQE.1975.1068539 CrossRefADSGoogle Scholar
  17. Utaka K., Akiba S., Sakai K., Matsushima Y. (1984) Analysis of quarter-wave-shifted DFB laser. Electron. Lett. 20: 326–327. doi: 10.1049/el:19840221 CrossRefGoogle Scholar
  18. Viheriälä J., Tommila J., Leinonen T., Dumitrescu M., Toikkanen L., Niemi T., Pessa M. (2009) Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers. Microelectron. Eng. 86: 321–324. doi: 10.1016/j.mee.2008.10.010 CrossRefGoogle Scholar
  19. Whiteaway J.E.A., Thompson G.H.B., Collar A.J., Armistead C.J. (1989) The design and assessment of λ/4 phase-shifted DFB laser structures. IEEE. J. Quantum Electron. 25: 1261–1279. doi: 10.1109/3.29257 CrossRefADSGoogle Scholar
  20. Yeh P. (1988) Optical Waves in Layered Media. John Wiley & Sons, CanadaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Antti Laakso
    • 1
  • Mihail Dumitrescu
    • 1
  • Jukka Viheriälä
    • 1
  • Jukka Karinen
    • 1
  • Mikko Suominen
    • 1
  • Markus Pessa
    • 1
  1. 1.ORCTampere University of TechnologyTampereFinland

Personalised recommendations