Optical and Quantum Electronics

, Volume 40, Issue 11–12, pp 875–890

2D Analysis of multimode photonic crystal resonant cavities with the finite volume time domain method

Article

Abstract

In this paper an accurate analysis of two-dimensional (2D) Photonic Crystal (PhC) based multimode resonant cavities is carried out. The analysis is performed with a robust and accurate Finite Volume Time Domain (FVTD) technique. The analysis proves the ability of the FVTD method to extract different resonant modes from a multimode PhC resonant cavity with the use of appropriate source profiles. A detailed explanation on how the source is engineered and used to excite different modes is given. Furthermore, parameters such as resonant frequency and quality factor for each resonant mode are accurately calculated.

Keywords

Finite volume time domain method Photonic crystals Multi-mode resonant cavities Uniaxial perfectly matched layers Absorbing boundary conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreozzi A., Jaluria Y., Manca O.: Numerical investigation of transient natural convection in a horizontal channel heated from the upper wall. Numer. Heat Transf. Part A-Appl. 9, 815–842 (2007)CrossRefADSGoogle Scholar
  2. Berenger J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994). doi:10.1006/jcph.1994.1159 MATHCrossRefADSMathSciNetGoogle Scholar
  3. Borel, P.I., Frandsen, L.H., Harpøth, A., Leon, J.B., Liu, H., Kristensen, M., Bogaerts, W., Dumon, P., Baets, R., Wiaux, V., Wouters, J., Beckx, S.: Bandwidth engineering of photonic crystal waveguide bends. Electron. Lett. 40 (2004)Google Scholar
  4. Chaiko M.A.: A finite-volume approach for simulation of liquid-column separation in pipelines. J. Fluids Eng. Trans. Asme 128, 1324–1335 (2006). doi:10.1115/1.2353271 CrossRefGoogle Scholar
  5. Costa R., Melloni A., Martinelli M.: Bandpass resonant filters in photonic-crystal waveguides. IEEE Photon. Technol. Lett. 15, 401–403 (2003). doi:10.1109/LPT.2002.807953 CrossRefADSGoogle Scholar
  6. Faraon A., Englud D., Bulla D., Luther-Davies B., Eggleton B.J., Stoltz N., Petroff P., Vučković J.: Local tuning of photonic crystal cavities using chalcogenide glasses. Appl. Phys. Lett. 92, 043123-1–043123-3 (2008)CrossRefADSGoogle Scholar
  7. Joannopoulos J.D., Meade R.D., Winn J.N.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, NJ (1995)MATHGoogle Scholar
  8. Lohrengel, S., Remaki, M.: A FV scheme for Maxwell’s equations—convergence analysis on unstructured meshes. In: Third Symposium of Finite Volumes for Complex Applications, Porquerolles, France, 24–28 June 2002.Google Scholar
  9. Mekis A., Meier M., DodaBalapur A., Slusher R.E., Joannopulos J.D.: Lasing mechanism in two dimensional photonic crystal lasers. Appl. Phys., A Mater. Sci. Process. 69, 111–114 (1999). doi:10.1007/s003390050981 CrossRefADSGoogle Scholar
  10. Obayya S.S.A.: Finite element time domain solution of resonant modes in photonic bandgap cavities. J. Opt. Quantum Electron. 37, 865–873 (2005). doi:10.1007/s11082-005-1120-9 CrossRefGoogle Scholar
  11. Ohkubo H., Othera Y., Kawakami S., Chiba T.: Transmission wavelength shift of +36 nm observed with Ta2O5-SiO2 multichannel wavelength filters consisting of three-dimensional photonic crystals. IEEE Photon. Technol. Lett. 16, 1322–1324 (2004). doi:10.1109/LPT.2004.826232 CrossRefADSGoogle Scholar
  12. Painter O., Vučković J., Scherer A.: Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. J. Opt. Soc. Am. B 16, 275–285 (1999). doi:10.1364/JOSAB.16.000275 CrossRefADSGoogle Scholar
  13. Pinto D., Obayya S.S.A.: Improved complex-envelope alternating-direction-implicit finite-difference-time-domain method for photonic-bandgap cavities. IEEE J. Lightwave Technol. 25, 440–447 (2007). doi:10.1109/JLT.2006.886712 CrossRefADSGoogle Scholar
  14. Pinto D., Obayya S.S.A.: Accurate perfectly matched layer finite-volume time-domain method for photonic bandgap devices. IEEE Photon. Technol. Lett. 20, 339–341 (2008). doi:10.1109/LPT.2007.913334 CrossRefADSGoogle Scholar
  15. Piperno S. et al.: A nondiffusive finite volume scheme for 3-D Maxwell equations on unstructured meshes. SIAM J. Numer. Anal. 39, 2089–2108 (2002). doi:10.1137/S0036142901387683 MATHCrossRefMathSciNetGoogle Scholar
  16. Povinelli M.L., Johnson S.G., Fan S., Joannopoulos J.D.: Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap. Phys. Rev. B 64, 075313 (2001). doi:10.1103/PhysRevB.64.075313 CrossRefADSGoogle Scholar
  17. Rao S.M.: Time Domain Electromagnetics. Academic Press, New York (1999)Google Scholar
  18. Remaki M.: A new finite volume scheme for solving Maxwell’s system. COMPEL 19, 913–931 (2000)MATHGoogle Scholar
  19. Rodriguez-Esquerre V.F., Koshiba M., Figueroa H.: Finite-element analysis of photonic crystal cavities: time and frequency domain. J. Lightwave Technol. 23, 1514–1521 (2005). doi:10.1109/JLT.2005.843441 CrossRefADSGoogle Scholar
  20. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood, MA (2005).Google Scholar
  21. Villeneuve P.R., Fan S., Joannopoulos J.D.: Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency. Phys. Rev. B 54, 7837–7842 (1996). doi:10.1103/PhysRevB.54.7837 CrossRefADSGoogle Scholar
  22. Yu H., Yu J., Yu Y., Fan Z., Chen S.: Design, fabrication, and characterization of an ultracompact low-loss photonic crystal corner mirror. IEEE J. Quantum Electron. 43, 876–882 (2007). doi:10.1109/JQE.2007.904307 CrossRefADSGoogle Scholar
  23. Zhou W., Qiang Z., Chen L.: Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach. J. Phys. D Appl. Phys. 40, 2615–2623 (2007). doi:10.1088/0022-3727/40/9/S01 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Faculty of Advanced TechnologyUniversity of GlamorganPontypriddUK

Personalised recommendations