Optical and Quantum Electronics

, Volume 40, Issue 11–12, pp 957–966 | Cite as

An improved perfectly matched layer for the eigenmode expansion technique

  • Niels GregersenEmail author
  • Jesper Mørk


When performing optical simulations for rotationally symmetric geometries using the eigenmode expansion technique, it is necessary to place the geometry under investigation inside a cylinder with perfectly conducting walls. The parasitic reflections at the boundary of the computational domain can be suppressed by introducing a perfectly matched layer (PML) using e.g. complex coordinate stretching of the cylinder radius. However, the traditional PML suffers from an artificial field divergence limiting its usefulness. We show that the choice of a constant cylinder radius leads to mode profiles with exponentially increasing field amplitudes resulting in numerical instability. As a remedy we propose an improved PML based on a mode-dependent cylinder radius and mode profiles with stable field amplitudes. The new PML formulation eliminates the artificial field divergence and ensures numerical stability.


PML Perfectly matched layer Eigenmode expansion Numerical modeling 



Perfectly Matched Layer


Eigenmode Expansion Technique


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balanis C.A.: Auxiliary vector potentials, construction of solutions, and radiation and scattering equations. In: Balanis, C.A. (eds) Advanced Engineering Electromagnetics, pp. 254–309. Wiley, New York (1989)Google Scholar
  2. Bérenger J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994). doi: 10.1006/jcph.1994.1159 zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. Bienstman P., Baets R.: Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers. Opt. Quantum Electron. 33, 327–341 (2001). doi: 10.1023/A:1010882531238 CrossRefGoogle Scholar
  4. Bienstman P., Derudder H., Baets R., Olyslager F., De Zutter D.: Analysis of cylindrical waveguide discontinuities using vectorial eigenmodes and perfectly matched layers. IEEE Trans. Microw. Theor. Tech. 49, 349–354 (2001). doi: 10.1109/22.903096 CrossRefGoogle Scholar
  5. Bienstman P., Baets R.: Advanced boundary conditions for eigenmode expansion models. Opt. Quantum Electron. 34, 523–540 (2002)Google Scholar
  6. Chen L., Towe E.: Nanowire lasers with distributed-Bragg-reflector mirrors. Appl. Phys. Lett. 89, 053125 (2006). doi: 10.1063/1.2245219 CrossRefADSGoogle Scholar
  7. Chew W.C., Weedon W.H.: A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7, 599–604 (1994). doi: 10.1002/mop.4650071304 CrossRefADSGoogle Scholar
  8. Gregersen N., Tromborg B., Bozhevolnyi S.I.: Vectorial modeling of near-field imaging with uncoated fiber probes: transfer function and resolving power. Appl. Opt. 45, 8739–8747 (2006). doi: 10.1364/AO.45.008739 CrossRefADSGoogle Scholar
  9. Gregersen N., Nielsen T.R., Tromborg B., Mørk J.: Quality factors of nonideal micro pillars. Appl. Phys. Lett. 91, 011116 (2007). doi: 10.1063/1.2751586 CrossRefADSGoogle Scholar
  10. Gregersen N., Nielsen T.R., Claudon J., Gérard J.-M., Mørk J.: Controlling the emission profile of a nanowire with a conical taper. Opt. Lett. 33, 1693–1695 (2008). doi: 10.1364/OL.33.001693 CrossRefADSGoogle Scholar
  11. Li L.: Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A 13, 1024–1035 (1996). doi: 10.1364/JOSAA.13.001024 CrossRefADSGoogle Scholar
  12. Maslov A.V., Ning C.Z.: Far-field emission of a semiconductor nanowire laser. Opt. Lett. 29, 572–574 (2004). doi: 10.1364/OL.29.000572 CrossRefADSGoogle Scholar
  13. Sacks Z., Kingland D., Lee R., Lee J.: A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas Propag. 43, 1460–1463 (1995). doi: 10.1109/8.477075 CrossRefADSGoogle Scholar
  14. Sagan H.: Boundary and eigenvalue problems in mathematical physics. Dover Publications Inc., New York (1989)Google Scholar
  15. Shyroki D.M., Lavrinenko A.V.: Perfectly matched layer method in the finite-difference time-domain and frequency-domain calculations.. Phys. Stat. Sol. (b) 244, 3506–3514 (2007)CrossRefGoogle Scholar
  16. Watanabe Y., Yamamoto N., Komori K.: Numerical analysis of waveguides in three-Dimensional photonic crystal with finite thickness. Jpn. J. Appl. Phys. 43, 2015–2018 (2004). doi: 10.1143/JJAP.43.2015 CrossRefADSGoogle Scholar
  17. Yariv A.: Propagation of optical beams in fibers. In: Yariv, A. (eds) Optical Electronics in Modern Communications, pp. 76–120. Oxford University Press, New York (1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.DTU Fotonik, Department of Photonics EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations