Optical and Quantum Electronics

, Volume 40, Issue 14–15, pp 1077–1083 | Cite as

TiberCAD: towards multiscale simulation of optoelectronic devices

  • Matthias Auf der Maur
  • Michael Povolotskyi
  • Fabio Sacconi
  • Alessandro Pecchia
  • Giuseppe Romano
  • Gabriele Penazzi
  • Aldo Di Carlo
Article

Abstract

Due to the downscaling of semiconductor device dimensions and the emergence of new devices based on nanostructures, carbon nanotubes and molecules, the classical device simulation approach based on semi-classical transport theories needs to be extended towards a quantum mechanical description. We present a simulation environment designed for multiscale and multiphysics simulation of electronic and optoelectronic devices with the final aim of coupling classical with atomistic simulation approaches.

Keywords

Multiscale Multiphysics Device simulation Drift-diffusion Atomistic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balay, S., Buschelmann, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2001)
  2. Bank R.E., Rose D.J., Fichtner W.: Numerical methods for semiconductor device simulation. IEEE Trans. Electron Devices 30(9), 1031–1041 (1983)CrossRefADSGoogle Scholar
  3. Chuang, S.L.: Physics of optoelectronic devices, 1st edn. Wiley Series in Pure and Applied Optics. Wiley, Chichester (1995)Google Scholar
  4. Chuang S.L., Chang C.: k · p method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491–2504 (1996)CrossRefADSGoogle Scholar
  5. Di Carlo A.: Introducing Molecular Electronics. Springer, Heidelberg (2005)Google Scholar
  6. Hernandez V., Roman J.E., Vidal V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. ITRS: International Technology Roadmap for Semiconductors. http://www.itrs.net (2005)
  8. Kirk, B., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254. http://dx.doi.org/10.1007/s00366-006-0049-3 (2006)
  9. Lever P., Buda M., Tan H.H., Jagadish C.: Characteristics of MOCVD-grown thin p-clad InGaAs quantum-dot lasers. IEEE Photonics Technol. Lett. 16, 2589–2591 (2004)CrossRefADSGoogle Scholar
  10. Pecchia A., Di Carlo A.: Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 67, 1497–1561 (2004)CrossRefADSGoogle Scholar
  11. Povolotskyi M., Di Carlo A.: Elasticity theory of pseudomorphic heterostructures grown on substrates of arbitrary thickness. J. Appl. Phys. 100, 063514 (2006)CrossRefADSGoogle Scholar
  12. Wachutka G.K.: Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput. Aided Des. 11, 1141–1149 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Matthias Auf der Maur
    • 1
  • Michael Povolotskyi
    • 1
    • 2
  • Fabio Sacconi
    • 1
  • Alessandro Pecchia
    • 1
  • Giuseppe Romano
    • 1
  • Gabriele Penazzi
    • 1
  • Aldo Di Carlo
    • 1
  1. 1.Department of Electronic EngineeringUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Georgia Institute of TechnologySavannahUSA

Personalised recommendations