Advertisement

Optical and Quantum Electronics

, Volume 40, Issue 11–12, pp 821–835 | Cite as

Chains of coupled square dielectric optical microcavities

  • Manfred Hammer
Open Access
Article

Abstract

Chains of coupled square dielectric cavities are investigated in a 2-D setting, by means of a quasi-analytical eigenmode expansion method. Resonant transfer of optical power can be achieved along quite arbitrary, moderately long rectangular paths (up to 9 coupled cavities are considered), even with individual standing-wave resonators of limited quality. We introduce an ab-initio coupled mode model, based on a simple superposition of slab mode profiles as a template for the field of individual cavities. Although no loss mechanisms are built in, the model can still help to interprete the results of the former numerical experiments.

Keywords

Integrated optics Numerical modeling Coupled mode theory Variational modeling Dielectric optical microcavities Resonator chains 

PACS codes

42.82.–m 42.82.Bq 42.82.Et 

Notes

Acknowledgments

This work has been supported by the Dutch Technology foundation (BSIK/NanoNed project TOE.7143). The author thanks E. van Groesen, H. J.W. M. Hoekstra, O. V. Ivanova, M. Maksimovic, and R. Stoffer for many fruitful discussions.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Astratov V.N., Franchak J.P., Ashili S.P.: Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder. Appl. Phys. Lett. 85(23), 5508–5510 (2004)CrossRefADSGoogle Scholar
  2. Bayindir M., Temelkuran B., Ozbay E.: Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals. Phys. Rev. B 61(18), R11 855–R11 858 (2000)CrossRefGoogle Scholar
  3. Boriskina, S.V.: Efficient simulation and design of coupled optical resonator clusters and waveguides. In: Proceedings of the 7th International Conference on Transparent Optical Networks (ICTON), vol. 2, pp. 330–332 (2005)Google Scholar
  4. Boriskina S.V.: Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: aproposal and numerical analysis. J. Opt. Soc. Am. 23(8), 1565–1573 (2006)CrossRefADSGoogle Scholar
  5. Boriskina S.V.: Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. Opt. Lett. 32(11), 1557–1559 (2007)CrossRefADSGoogle Scholar
  6. Boriskina S.V., Benson T.M., Sewell P.: Photonic molecules made of matched and mismatched microcavities: new functionalities of microlasers and optoelectronic components. Proc. SPIE 6452, 64520X (2007)CrossRefGoogle Scholar
  7. Boriskina S.V., Sewell P., Benson T.M., Nosich A.I.: Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric galerkin discretization. J. Opt. Soc. Am. A 21(03), 393–402 (2004)CrossRefADSGoogle Scholar
  8. Boriskina S.V., Benson T.M., Sewell P., Nosich A.I.: Optical modes in 2-d imperfect square and triangular microcavities. IEEE J. Quantum Electron. 41(6), 857–862 (2005)CrossRefADSGoogle Scholar
  9. Chen Z., Taflove A., Backman V.: Highly efficient coupling and transport phenomena in chains of dielectric microspheres. Opt. Lett. 31(03), 389–391 (2006)CrossRefADSGoogle Scholar
  10. Fan S., Villeneuve P.R., Joannopoulos J.D., Khan M.J., Manolatou C., Haus H.A.: Theoretical analysis of channel drop tunneling processes. Phys. Rev. B 59(24), 15882–15892 (1999)CrossRefADSGoogle Scholar
  11. Hammer M.: Resonant coupling of dielectric optical waveguides via rectangular microcavities: the coupled guided mode perspective. Opt. Commun. 214(1–6), 155–170 (2002)CrossRefADSMathSciNetGoogle Scholar
  12. Hammer M.: Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics. Opt. Commun 235(4–6), 285–303 (2004)CrossRefADSGoogle Scholar
  13. Hammer M.: Hybrid analytical/numerical coupled-mode modeling of guided wave devices. J. Lightwave Technol. 25(9), 2287–2298 (2007)CrossRefADSGoogle Scholar
  14. Hammer, M. METRIC—Mode expansion tools for 2D rectangular integrated optical circuits. http://www.math.utwente.nl/~hammerm/Metric/
  15. Hammer M., van Groesen E.: Total multimode reflection at facets of planar high contrast optical waveguides. J.Lightwave Technol. 20(8), 1549–1555 (2002)CrossRefADSGoogle Scholar
  16. JCMwave GmbH, Haarer Str. 14a, 85640 Putzbrunn/Munich, Germany. http://www.jcmave.com/
  17. Khan M.J., Manolatou C., Fan S., Villeneuve P.R., Haus H.A., Joannopoulos J.D.: Mode-coupling analysis of multipole symmetric resonant add/drop filters. IEEE J. Quantum Electron. 35(10), 1451–1460 (1999)CrossRefADSGoogle Scholar
  18. Little B.E., Chu S.T., Absil P.P., Hryniewicz J.V., Johnson F.G., Seiferth F., Gill D., Van V., King O., Trakalo M.: Very high-order microring resonator filters for WDM applications. IEEE Photonics Technol. Lett. 16(10), 2263–2265 (2004)CrossRefADSGoogle Scholar
  19. Lohmeyer M.: Mode expansion modeling of rectangular integrated optical microresonators. Opt. Quantum Electron. 34(5), 541–557 (2002)CrossRefGoogle Scholar
  20. Maksimovic M., Hammer M., van Groesen E.: Field representation for optical defect microcavities in multilayer structures using quasi-normal modes. Opt. Commun. 281(6), 1401–1411 (2008a)CrossRefADSGoogle Scholar
  21. Maksimovic, M., Hammer, M., van Groesen, E.: Coupled optical defect microcavities in 1d photonic crystals and quasi-normal modes. In Greiner, C.M., Waechter, C.A. (eds.), Integrated Optics: Devices, Materials, and Technologies XII, volume 6896 of SPIE Proceedings, pp. 689605–1–689605–11 (2008b)Google Scholar
  22. Manolatou C., Khan M.J., Fan S., Villeneuve P.R., Haus H.A., Joannopoulos J.D.: Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron. 35(9), 1322–1331 (1999)CrossRefADSGoogle Scholar
  23. Melloni F., Morichetti A., Martinelli M.: Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures. Opt. Quantum Electron. 35, 365–379 (2003)CrossRefGoogle Scholar
  24. Morichetti F., Melloni A., Breda A., Canciamilla A., Ferrari C., Martinelli M.: A reconfigurable architecture for continuously variable optical slow-wave delay lines. Opt. Express 15(25), 17273–17281 (2007)CrossRefADSGoogle Scholar
  25. Morichetti F., Melloni A., Ferrari C., Martinelli M.: Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay line. Opt. Express 16(12), 8395–8399 (2008)CrossRefADSGoogle Scholar
  26. Pishko S.V., Sewell P.D., Benson T.M., Boriskina S.V.: Efficient analysis and design of low-loss whispering-gallery-mode coupled resonator optical waveguide bends. J. Lightwave Technol. 25(9), 2487–2494 (2007)CrossRefADSGoogle Scholar
  27. Poon J.K.S., Zhu L., DeRose G.A., Yariv A.: Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31(4), 456–458 (2006)CrossRefADSGoogle Scholar
  28. Prkna, L.: Rotationally symmetric resonant devices in integrated optics. Ph.D. Thesis, Faculty of Mathematics and Physics, Charles University, Prague, and Institute of Radio Engineering and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic (2004)Google Scholar
  29. Prkna L., Čtyroký J., Hubálek M.: Ring microresonator as a photonic structure with complex eigenfrequency. Opt. Quantum Electron. 36(1/3), 259–269 (2004)CrossRefGoogle Scholar
  30. Reynolds A.L., Peschel U., Lederer F., Roberts P.J., Krauss T.F., de Maagt P.J.I.: Coupled defects in photonic crystals. IEEE Trans. Microwav. Theo. Tech. 49(10), 1860–1867 (2001)CrossRefGoogle Scholar
  31. Scheuer J., Paloczi G.T., Poon J.K.S., Yariv A.: Coupled resonator optical waveguides—toward the slowing & storage of light. Opt. Photonics News 16(2), 36–40 (2005)CrossRefADSGoogle Scholar
  32. Smotrova E.I., Nosich A.I.: Mathematical study of the two-dimensional lasing problem for the whispering-gallery modes in a circular dielectric microcavity. Opt. Quantum Electron. 36, 213–221 (2004)CrossRefGoogle Scholar
  33. Smotrova E.I., Nosich A.I., Benson T.M., Sewell P.: Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing. IEEE J. Sel. Top. Quantum Electron. 12(1), 78–85 (2006)CrossRefGoogle Scholar
  34. Sopaheluwakan, A.: Characterization and Simulation of Localized States in Optical Structures. University of Twente, Enschede, The Netherlands (2006)Google Scholar
  35. van Groesen E.W.C., Molenaar J.: Continuum Modeling in the Physical Sciences. SIAM publishers, Philadelphia, USA (2007)MATHGoogle Scholar
  36. Vassallo C.: Optical Waveguide Concepts. Elsevier, Amsterdam (1991)Google Scholar
  37. Yariv A., Xu Y., Lee R.K., Scherer A.: Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24(11), 711–713 (1999)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
  2. 2.Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations